{"title":"具有约束运动学的无人水面飞行器的自组织合作狩猎","authors":"Qun Deng, Yan Peng, Tingke Mo, Jinduo Wang, Dong Qu, Yangmin Xie","doi":"10.1002/oca.3194","DOIUrl":null,"url":null,"abstract":"SummaryThe article aims at solving a cooperative hunting problem for multiple unmanned surface vehicles (USVs) subject to constrained kinematics. In order to cooperatively trap the evader into the hunting domain, a velocity model with control variable for the pursuers is firstly proposed according to the Apollonius circle. Then, a flexible self‐organizing control strategy is developed, which enables the pursuers to approach the evader while forming an encirclement. The pursuers can dynamically adapt their strategies in real‐time by choosing the optimal control variable. Additionally, take into account the limitation imposed on the vessel's motion, the optimal control variable with constraint can be obtained by using the particle swarm optimization with log‐barrier method. The simulation results ultimately demonstrate the validity and superiority of the proposed cooperative hunting algorithm.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self‐organizing cooperative hunting for unmanned surface vehicles with constrained kinematics\",\"authors\":\"Qun Deng, Yan Peng, Tingke Mo, Jinduo Wang, Dong Qu, Yangmin Xie\",\"doi\":\"10.1002/oca.3194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryThe article aims at solving a cooperative hunting problem for multiple unmanned surface vehicles (USVs) subject to constrained kinematics. In order to cooperatively trap the evader into the hunting domain, a velocity model with control variable for the pursuers is firstly proposed according to the Apollonius circle. Then, a flexible self‐organizing control strategy is developed, which enables the pursuers to approach the evader while forming an encirclement. The pursuers can dynamically adapt their strategies in real‐time by choosing the optimal control variable. Additionally, take into account the limitation imposed on the vessel's motion, the optimal control variable with constraint can be obtained by using the particle swarm optimization with log‐barrier method. The simulation results ultimately demonstrate the validity and superiority of the proposed cooperative hunting algorithm.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self‐organizing cooperative hunting for unmanned surface vehicles with constrained kinematics
SummaryThe article aims at solving a cooperative hunting problem for multiple unmanned surface vehicles (USVs) subject to constrained kinematics. In order to cooperatively trap the evader into the hunting domain, a velocity model with control variable for the pursuers is firstly proposed according to the Apollonius circle. Then, a flexible self‐organizing control strategy is developed, which enables the pursuers to approach the evader while forming an encirclement. The pursuers can dynamically adapt their strategies in real‐time by choosing the optimal control variable. Additionally, take into account the limitation imposed on the vessel's motion, the optimal control variable with constraint can be obtained by using the particle swarm optimization with log‐barrier method. The simulation results ultimately demonstrate the validity and superiority of the proposed cooperative hunting algorithm.