具有约束运动学的无人水面飞行器的自组织合作狩猎

Qun Deng, Yan Peng, Tingke Mo, Jinduo Wang, Dong Qu, Yangmin Xie
{"title":"具有约束运动学的无人水面飞行器的自组织合作狩猎","authors":"Qun Deng, Yan Peng, Tingke Mo, Jinduo Wang, Dong Qu, Yangmin Xie","doi":"10.1002/oca.3194","DOIUrl":null,"url":null,"abstract":"SummaryThe article aims at solving a cooperative hunting problem for multiple unmanned surface vehicles (USVs) subject to constrained kinematics. In order to cooperatively trap the evader into the hunting domain, a velocity model with control variable for the pursuers is firstly proposed according to the Apollonius circle. Then, a flexible self‐organizing control strategy is developed, which enables the pursuers to approach the evader while forming an encirclement. The pursuers can dynamically adapt their strategies in real‐time by choosing the optimal control variable. Additionally, take into account the limitation imposed on the vessel's motion, the optimal control variable with constraint can be obtained by using the particle swarm optimization with log‐barrier method. The simulation results ultimately demonstrate the validity and superiority of the proposed cooperative hunting algorithm.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self‐organizing cooperative hunting for unmanned surface vehicles with constrained kinematics\",\"authors\":\"Qun Deng, Yan Peng, Tingke Mo, Jinduo Wang, Dong Qu, Yangmin Xie\",\"doi\":\"10.1002/oca.3194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryThe article aims at solving a cooperative hunting problem for multiple unmanned surface vehicles (USVs) subject to constrained kinematics. In order to cooperatively trap the evader into the hunting domain, a velocity model with control variable for the pursuers is firstly proposed according to the Apollonius circle. Then, a flexible self‐organizing control strategy is developed, which enables the pursuers to approach the evader while forming an encirclement. The pursuers can dynamically adapt their strategies in real‐time by choosing the optimal control variable. Additionally, take into account the limitation imposed on the vessel's motion, the optimal control variable with constraint can be obtained by using the particle swarm optimization with log‐barrier method. The simulation results ultimately demonstrate the validity and superiority of the proposed cooperative hunting algorithm.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文旨在解决多个无人水面飞行器(USV)在运动学约束下的合作狩猎问题。为了将逃逸者协同捕获到狩猎域中,首先根据阿波罗圆提出了带有控制变量的追逐者速度模型。然后,开发出一种灵活的自组织控制策略,使追逐者能够在形成包围圈的同时接近逃避者。追逐者可以通过选择最佳控制变量来实时动态调整策略。此外,考虑到对船只运动的限制,利用粒子群优化与对数屏障法可以获得带约束的最优控制变量。仿真结果最终证明了所提出的合作狩猎算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self‐organizing cooperative hunting for unmanned surface vehicles with constrained kinematics
SummaryThe article aims at solving a cooperative hunting problem for multiple unmanned surface vehicles (USVs) subject to constrained kinematics. In order to cooperatively trap the evader into the hunting domain, a velocity model with control variable for the pursuers is firstly proposed according to the Apollonius circle. Then, a flexible self‐organizing control strategy is developed, which enables the pursuers to approach the evader while forming an encirclement. The pursuers can dynamically adapt their strategies in real‐time by choosing the optimal control variable. Additionally, take into account the limitation imposed on the vessel's motion, the optimal control variable with constraint can be obtained by using the particle swarm optimization with log‐barrier method. The simulation results ultimately demonstrate the validity and superiority of the proposed cooperative hunting algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信