碎片床的瞬态行为和传热特性:LIVEJ2 试验的模拟和分析

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Antonello Nappi, Marco Pellegrini, Shinya Mizokami, Koji Okamoto
{"title":"碎片床的瞬态行为和传热特性:LIVEJ2 试验的模拟和分析","authors":"Antonello Nappi, Marco Pellegrini, Shinya Mizokami, Koji Okamoto","doi":"10.1016/j.anucene.2024.110854","DOIUrl":null,"url":null,"abstract":"Multiple uncertainties still exist about the state of the debris in Fukushima Daiichi Nuclear Power Station (1F). In the past, the attention of the nuclear safety community was focused on the heat transfer characteristics in the case of an homogeneous pool, but little attention was given to address the melting and heat transfer in the presence of a debris bed constituted of materials with different melting points. This condition represents a challenge for CFD analyses, because it includes multi-physics conditions, such as a low melting point fluid convecting into a debris bed surrounded by a crust on the vessel wall which has received little attention compared to classical CFD analyses. Even though a comprehensive analysis of a related experiment (i.e. LIVE-J2) has been performed recently by Madokoro et al. (2023) little attention on the results has been paid to the effect of debris bed porosity and the existence of a gap between the vessel wall and the crust. In the paper we have modified the porosity resistance based on the Ergun equation and proposed a simple model for the gap conductance in the lower part of the crust. The results show an improvement in the prediction of the thermal stratification and the vessel temperature in the lower locations. In addition, highlight that such phenomena constitute key parameters to keep into consideration in the simulation of prototypical cases both for CFD and lumped parameter codes (e.g. MELCOR, MAAP).","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient behaviour and heat transfer characteristics in debris beds: Simulation and analysis of the LIVEJ2 experiment\",\"authors\":\"Antonello Nappi, Marco Pellegrini, Shinya Mizokami, Koji Okamoto\",\"doi\":\"10.1016/j.anucene.2024.110854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple uncertainties still exist about the state of the debris in Fukushima Daiichi Nuclear Power Station (1F). In the past, the attention of the nuclear safety community was focused on the heat transfer characteristics in the case of an homogeneous pool, but little attention was given to address the melting and heat transfer in the presence of a debris bed constituted of materials with different melting points. This condition represents a challenge for CFD analyses, because it includes multi-physics conditions, such as a low melting point fluid convecting into a debris bed surrounded by a crust on the vessel wall which has received little attention compared to classical CFD analyses. Even though a comprehensive analysis of a related experiment (i.e. LIVE-J2) has been performed recently by Madokoro et al. (2023) little attention on the results has been paid to the effect of debris bed porosity and the existence of a gap between the vessel wall and the crust. In the paper we have modified the porosity resistance based on the Ergun equation and proposed a simple model for the gap conductance in the lower part of the crust. The results show an improvement in the prediction of the thermal stratification and the vessel temperature in the lower locations. In addition, highlight that such phenomena constitute key parameters to keep into consideration in the simulation of prototypical cases both for CFD and lumped parameter codes (e.g. MELCOR, MAAP).\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.anucene.2024.110854\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.anucene.2024.110854","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

福岛第一核电站(1F)碎片的状态仍存在多种不确定性。过去,核安全界关注的重点是均质池的传热特性,但很少关注由不同熔点材料构成的碎片床的熔化和传热问题。这种情况对 CFD 分析是一个挑战,因为它包括多物理条件,例如低熔点流体对流到由容器壁上的结壳包围的碎屑床,与传统的 CFD 分析相比,这种情况很少受到关注。尽管 Madokoro 等人(2023 年)最近对相关实验(即 LIVE-J2)进行了全面分析,但对碎片床孔隙率的影响以及容器壁与结壳之间存在间隙的情况却很少关注。在本文中,我们根据 Ergun 方程修改了孔隙度阻力,并提出了一个简单的地壳下部间隙传导模型。结果表明,对下部位置的热分层和容器温度的预测有所改进。此外,还强调了这些现象是 CFD 和集合参数代码(如 MELCOR、MAAP)模拟原型案例时需要考虑的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient behaviour and heat transfer characteristics in debris beds: Simulation and analysis of the LIVEJ2 experiment
Multiple uncertainties still exist about the state of the debris in Fukushima Daiichi Nuclear Power Station (1F). In the past, the attention of the nuclear safety community was focused on the heat transfer characteristics in the case of an homogeneous pool, but little attention was given to address the melting and heat transfer in the presence of a debris bed constituted of materials with different melting points. This condition represents a challenge for CFD analyses, because it includes multi-physics conditions, such as a low melting point fluid convecting into a debris bed surrounded by a crust on the vessel wall which has received little attention compared to classical CFD analyses. Even though a comprehensive analysis of a related experiment (i.e. LIVE-J2) has been performed recently by Madokoro et al. (2023) little attention on the results has been paid to the effect of debris bed porosity and the existence of a gap between the vessel wall and the crust. In the paper we have modified the porosity resistance based on the Ergun equation and proposed a simple model for the gap conductance in the lower part of the crust. The results show an improvement in the prediction of the thermal stratification and the vessel temperature in the lower locations. In addition, highlight that such phenomena constitute key parameters to keep into consideration in the simulation of prototypical cases both for CFD and lumped parameter codes (e.g. MELCOR, MAAP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信