基于时空信息增益的嵌入式图结构学习的风电场集群功率超短期预测

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Mao Yang;Yunfeng Guo;Fulin Fan
{"title":"基于时空信息增益的嵌入式图结构学习的风电场集群功率超短期预测","authors":"Mao Yang;Yunfeng Guo;Fulin Fan","doi":"10.1109/TSTE.2024.3455759","DOIUrl":null,"url":null,"abstract":"Ultra-short-term prediction of wind farm cluster power (UPWFCP) is of great significance for the development of intra-day power generation plan, and the power prediction accuracy is difficult to be further improved due to the chaotic effect of the weather system and the incompleteness of the information. In this regard, this paper proposes an embedded graph structure learning method for wind farm cluster (WFC) that incorporates spatiotemporal information gain (STIG) theory. The graph structure describing the spatiotemporal evolution relationship of information between wind farms (WFs) is constructed based on the spatiotemporal transfer relationship of power waveforms between WFs. An embedded graph attention network (EGAN) is proposed to learn STIG adjacency relationship among WFs, and a dynamic grouping scheme of redundant nodes in WFs based on STIG distance is constructed to reduce the modeling complexity. The proposed method is applied to the WFC of Inner Mongolia, China, and the results show that the NRMSE, NMAE, and MAPE of the proposed method are on average 2.63%, 2.09%, and 20.95% lower, and the R\n<sup>2</sup>\n and Pr are on average 7.66% and 6.64% higher, respectively, compared with the rest of the comparison methods at all time scales.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"308-322"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Short-Term Prediction of Wind Farm Cluster Power Based on Embedded Graph Structure Learning With Spatiotemporal Information Gain\",\"authors\":\"Mao Yang;Yunfeng Guo;Fulin Fan\",\"doi\":\"10.1109/TSTE.2024.3455759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-short-term prediction of wind farm cluster power (UPWFCP) is of great significance for the development of intra-day power generation plan, and the power prediction accuracy is difficult to be further improved due to the chaotic effect of the weather system and the incompleteness of the information. In this regard, this paper proposes an embedded graph structure learning method for wind farm cluster (WFC) that incorporates spatiotemporal information gain (STIG) theory. The graph structure describing the spatiotemporal evolution relationship of information between wind farms (WFs) is constructed based on the spatiotemporal transfer relationship of power waveforms between WFs. An embedded graph attention network (EGAN) is proposed to learn STIG adjacency relationship among WFs, and a dynamic grouping scheme of redundant nodes in WFs based on STIG distance is constructed to reduce the modeling complexity. The proposed method is applied to the WFC of Inner Mongolia, China, and the results show that the NRMSE, NMAE, and MAPE of the proposed method are on average 2.63%, 2.09%, and 20.95% lower, and the R\\n<sup>2</sup>\\n and Pr are on average 7.66% and 6.64% higher, respectively, compared with the rest of the comparison methods at all time scales.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 1\",\"pages\":\"308-322\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669105/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669105/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-Short-Term Prediction of Wind Farm Cluster Power Based on Embedded Graph Structure Learning With Spatiotemporal Information Gain
Ultra-short-term prediction of wind farm cluster power (UPWFCP) is of great significance for the development of intra-day power generation plan, and the power prediction accuracy is difficult to be further improved due to the chaotic effect of the weather system and the incompleteness of the information. In this regard, this paper proposes an embedded graph structure learning method for wind farm cluster (WFC) that incorporates spatiotemporal information gain (STIG) theory. The graph structure describing the spatiotemporal evolution relationship of information between wind farms (WFs) is constructed based on the spatiotemporal transfer relationship of power waveforms between WFs. An embedded graph attention network (EGAN) is proposed to learn STIG adjacency relationship among WFs, and a dynamic grouping scheme of redundant nodes in WFs based on STIG distance is constructed to reduce the modeling complexity. The proposed method is applied to the WFC of Inner Mongolia, China, and the results show that the NRMSE, NMAE, and MAPE of the proposed method are on average 2.63%, 2.09%, and 20.95% lower, and the R 2 and Pr are on average 7.66% and 6.64% higher, respectively, compared with the rest of the comparison methods at all time scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信