用于太阳辐照度预报的混合机器学习和优化方法

IF 2.2 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Chaoyang Zhu, Mengxia Wang, Mengxing Guo, Jinxin Deng, Qipei Du, Wei Wei, Yuxiang Zhang
{"title":"用于太阳辐照度预报的混合机器学习和优化方法","authors":"Chaoyang Zhu, Mengxia Wang, Mengxing Guo, Jinxin Deng, Qipei Du, Wei Wei, Yuxiang Zhang","doi":"10.1080/0305215x.2024.2390126","DOIUrl":null,"url":null,"abstract":"The objective of this study is to investigate a novel hybrid model for the accurate prediction of direct normal irradiance. For this purpose, a decomposition technique, a clustering technique, an o...","PeriodicalId":50521,"journal":{"name":"Engineering Optimization","volume":"59 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid machine learning and optimization method for solar irradiance forecasting\",\"authors\":\"Chaoyang Zhu, Mengxia Wang, Mengxing Guo, Jinxin Deng, Qipei Du, Wei Wei, Yuxiang Zhang\",\"doi\":\"10.1080/0305215x.2024.2390126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to investigate a novel hybrid model for the accurate prediction of direct normal irradiance. For this purpose, a decomposition technique, a clustering technique, an o...\",\"PeriodicalId\":50521,\"journal\":{\"name\":\"Engineering Optimization\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Optimization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/0305215x.2024.2390126\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Optimization","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/0305215x.2024.2390126","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是研究一种新型混合模型,用于准确预测直接法线辐照度。为此,一种分解技术、一种聚类技术、一种...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid machine learning and optimization method for solar irradiance forecasting
The objective of this study is to investigate a novel hybrid model for the accurate prediction of direct normal irradiance. For this purpose, a decomposition technique, a clustering technique, an o...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Optimization
Engineering Optimization 管理科学-工程:综合
CiteScore
5.90
自引率
7.40%
发文量
74
审稿时长
3.5 months
期刊介绍: Engineering Optimization is an interdisciplinary engineering journal which serves the large technical community concerned with quantitative computational methods of optimization, and their application to engineering planning, design, manufacture and operational processes. The policy of the journal treats optimization as any formalized numerical process for improvement. Algorithms for numerical optimization are therefore mainstream for the journal, but equally welcome are papers which use the methods of operations research, decision support, statistical decision theory, systems theory, logical inference, knowledge-based systems, artificial intelligence, information theory and processing, and all methods which can be used in the quantitative modelling of the decision-making process. Innovation in optimization is an essential attribute of all papers but engineering applicability is equally vital. Engineering Optimization aims to cover all disciplines within the engineering community though its main focus is in the areas of environmental, civil, mechanical, aerospace and manufacturing engineering. Papers on both research aspects and practical industrial implementations are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信