Simbanex:基于相似性的 IEEE VIS 出版物探索

Daniel Witschard, Ilir Jusufi, Andreas Kerren
{"title":"Simbanex:基于相似性的 IEEE VIS 出版物探索","authors":"Daniel Witschard, Ilir Jusufi, Andreas Kerren","doi":"arxiv-2409.00478","DOIUrl":null,"url":null,"abstract":"Embeddings are powerful tools for transforming complex and unstructured data\ninto numeric formats suitable for computational analysis tasks. In this work,\nwe use multiple embeddings for similarity calculations to be applied in\nbibliometrics and scientometrics. We build a multivariate network (MVN) from a\nlarge set of scientific publications and explore an aspect-driven analysis\napproach to reveal similarity patterns in the given publication data. By\ndividing our MVN into separately embeddable aspects, we are able to obtain a\nflexible vector representation which we use as input to a novel method of\nsimilarity-based clustering. Based on these preprocessing steps, we developed a\nvisual analytics application, called Simbanex, that has been designed for the\ninteractive visual exploration of similarity patterns within the underlying\npublications.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"307 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simbanex: Similarity-based Exploration of IEEE VIS Publications\",\"authors\":\"Daniel Witschard, Ilir Jusufi, Andreas Kerren\",\"doi\":\"arxiv-2409.00478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embeddings are powerful tools for transforming complex and unstructured data\\ninto numeric formats suitable for computational analysis tasks. In this work,\\nwe use multiple embeddings for similarity calculations to be applied in\\nbibliometrics and scientometrics. We build a multivariate network (MVN) from a\\nlarge set of scientific publications and explore an aspect-driven analysis\\napproach to reveal similarity patterns in the given publication data. By\\ndividing our MVN into separately embeddable aspects, we are able to obtain a\\nflexible vector representation which we use as input to a novel method of\\nsimilarity-based clustering. Based on these preprocessing steps, we developed a\\nvisual analytics application, called Simbanex, that has been designed for the\\ninteractive visual exploration of similarity patterns within the underlying\\npublications.\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"307 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

嵌入式是将复杂和非结构化数据转换为适合计算分析任务的数字格式的强大工具。在这项工作中,我们使用多重嵌入进行相似性计算,并将其应用于文献计量学和科学计量学。我们从大量科学出版物中建立了一个多变量网络(MVN),并探索了一种方面驱动的分析方法,以揭示给定出版物数据中的相似性模式。通过将多变量网络划分为可单独嵌入的方面,我们能够获得灵活的向量表示,并将其作为基于相似性聚类的新方法的输入。在这些预处理步骤的基础上,我们开发了名为 Simbanex 的可视化分析应用,该应用旨在对底层出版物中的相似性模式进行交互式可视化探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simbanex: Similarity-based Exploration of IEEE VIS Publications
Embeddings are powerful tools for transforming complex and unstructured data into numeric formats suitable for computational analysis tasks. In this work, we use multiple embeddings for similarity calculations to be applied in bibliometrics and scientometrics. We build a multivariate network (MVN) from a large set of scientific publications and explore an aspect-driven analysis approach to reveal similarity patterns in the given publication data. By dividing our MVN into separately embeddable aspects, we are able to obtain a flexible vector representation which we use as input to a novel method of similarity-based clustering. Based on these preprocessing steps, we developed a visual analytics application, called Simbanex, that has been designed for the interactive visual exploration of similarity patterns within the underlying publications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信