离散记忆神经网络的复杂动力学分析及其 DSP 实现

Zhitang Han, Yinghong Cao, Bo Sun, Jun Mou
{"title":"离散记忆神经网络的复杂动力学分析及其 DSP 实现","authors":"Zhitang Han, Yinghong Cao, Bo Sun, Jun Mou","doi":"10.1140/epjs/s11734-024-01320-1","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a discrete memristor model and verifies the correctness of the model through circuit simulation. A six-dimensional discrete neural network was built by coupling the Rulkov neuron and the KTZ neuron. Dynamical analyses show that this neural network has multiple firing patterns when the memristor parameters and coupling coefficient are varied in the appropriate ranges, such as periodic firing, quasi-periodic firing, chaotic firing, and hyperchaotic firing. In addition, the coexisting multiple firing patterns and state transition phenomena of this neural network are revealed. Finally, the complexity analysis shows that the generated chaotic sequences have high pseudo-randomness, and the hardware implementation is completed in the Digital Signal Processor (DSP). This paper provides a reference for the study of memristive neural networks and communication encryption.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex dynamical analysis of a discrete memristive neural network and its DSP implementation\",\"authors\":\"Zhitang Han, Yinghong Cao, Bo Sun, Jun Mou\",\"doi\":\"10.1140/epjs/s11734-024-01320-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a discrete memristor model and verifies the correctness of the model through circuit simulation. A six-dimensional discrete neural network was built by coupling the Rulkov neuron and the KTZ neuron. Dynamical analyses show that this neural network has multiple firing patterns when the memristor parameters and coupling coefficient are varied in the appropriate ranges, such as periodic firing, quasi-periodic firing, chaotic firing, and hyperchaotic firing. In addition, the coexisting multiple firing patterns and state transition phenomena of this neural network are revealed. Finally, the complexity analysis shows that the generated chaotic sequences have high pseudo-randomness, and the hardware implementation is completed in the Digital Signal Processor (DSP). This paper provides a reference for the study of memristive neural networks and communication encryption.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01320-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01320-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种离散忆阻器模型,并通过电路仿真验证了该模型的正确性。通过 Rulkov 神经元和 KTZ 神经元的耦合,建立了一个六维离散神经网络。动力学分析表明,当记忆器参数和耦合系数在适当范围内变化时,该神经网络具有多种发射模式,如周期性发射、准周期性发射、混沌发射和超混沌发射。此外,还揭示了该神经网络并存的多重发射模式和状态转换现象。最后,复杂性分析表明生成的混沌序列具有很高的伪随机性,并在数字信号处理器(DSP)中完成了硬件实现。本文为研究记忆神经网络和通信加密提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complex dynamical analysis of a discrete memristive neural network and its DSP implementation

Complex dynamical analysis of a discrete memristive neural network and its DSP implementation

This paper introduces a discrete memristor model and verifies the correctness of the model through circuit simulation. A six-dimensional discrete neural network was built by coupling the Rulkov neuron and the KTZ neuron. Dynamical analyses show that this neural network has multiple firing patterns when the memristor parameters and coupling coefficient are varied in the appropriate ranges, such as periodic firing, quasi-periodic firing, chaotic firing, and hyperchaotic firing. In addition, the coexisting multiple firing patterns and state transition phenomena of this neural network are revealed. Finally, the complexity analysis shows that the generated chaotic sequences have high pseudo-randomness, and the hardware implementation is completed in the Digital Signal Processor (DSP). This paper provides a reference for the study of memristive neural networks and communication encryption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信