Paul-Adrian Călburean, Anda-Cristina Scurtu, Paul Grebenisan, Ioana-Andreea Nistor, Victor Vacariu, Reka-Katalin Drincal, Ioana Paula Sulea, Tiberiu Oltean, László Hadadi
{"title":"在全病例前瞻性PCI登记中,利用4D时间依赖性SHAP图从常规实验室参数中进行精准表型分析,从而进行机器学习的院外生存率预测","authors":"Paul-Adrian Călburean, Anda-Cristina Scurtu, Paul Grebenisan, Ioana-Andreea Nistor, Victor Vacariu, Reka-Katalin Drincal, Ioana Paula Sulea, Tiberiu Oltean, László Hadadi","doi":"10.1101/2024.08.31.24312888","DOIUrl":null,"url":null,"abstract":"<strong>Introduction</strong> Out-of-hospital mortality in coronary artery disease (CAD) is particularly high and established adverse event prediction tools are yet to be available. Our study aimed to investigate whether precision phenotyping can be performed using routine laboratory parameters for the prediction of out-of-hospital survival in a CAD population treated by percutaneous coronary intervention (PCI).","PeriodicalId":501297,"journal":{"name":"medRxiv - Cardiovascular Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision phenotyping from routine laboratory parameters for machine learning out-of-hospital survival prediction using 4D time-dependent SHAP plots in an all-comers prospective PCI registry\",\"authors\":\"Paul-Adrian Călburean, Anda-Cristina Scurtu, Paul Grebenisan, Ioana-Andreea Nistor, Victor Vacariu, Reka-Katalin Drincal, Ioana Paula Sulea, Tiberiu Oltean, László Hadadi\",\"doi\":\"10.1101/2024.08.31.24312888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Introduction</strong> Out-of-hospital mortality in coronary artery disease (CAD) is particularly high and established adverse event prediction tools are yet to be available. Our study aimed to investigate whether precision phenotyping can be performed using routine laboratory parameters for the prediction of out-of-hospital survival in a CAD population treated by percutaneous coronary intervention (PCI).\",\"PeriodicalId\":501297,\"journal\":{\"name\":\"medRxiv - Cardiovascular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Cardiovascular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.31.24312888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.31.24312888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precision phenotyping from routine laboratory parameters for machine learning out-of-hospital survival prediction using 4D time-dependent SHAP plots in an all-comers prospective PCI registry
Introduction Out-of-hospital mortality in coronary artery disease (CAD) is particularly high and established adverse event prediction tools are yet to be available. Our study aimed to investigate whether precision phenotyping can be performed using routine laboratory parameters for the prediction of out-of-hospital survival in a CAD population treated by percutaneous coronary intervention (PCI).