多维马丁内斯-阿隆索-沙巴特方程的不变分析

Naseem Abbas, Akhtar Hussain, Muhammad Waseem Akram, Shah Muhammad, Mohammad Shuaib
{"title":"多维马丁内斯-阿隆索-沙巴特方程的不变分析","authors":"Naseem Abbas, Akhtar Hussain, Muhammad Waseem Akram, Shah Muhammad, Mohammad Shuaib","doi":"10.1515/zna-2024-0115","DOIUrl":null,"url":null,"abstract":"This present study is concerned with the group-invariant solutions of the (3 + 1)-dimensional Martinez Alonso–Shabat equation by using the Lie symmetry method. The Lie transformation technique is used to deduce the infinitesimals, Lie symmetry operators, commutation relations, and symmetry reductions. The optimal system for the obtained Lie symmetry algebra is obtained by using the concept of the adjoint map. As for now, the considered model equation is converted into nonlinear ordinary differential equations (ODEs) in two cases in the symmetry reductions. The exact closed-form solutions are obtained by applying constraint conditions on the symmetry generators. Due to the presence of arbitrary functional parameters, these group-invariant solutions are displayed based on suitable numerical simulations. The conservation laws are obtained by using the multiplier method. The conclusion is accounted for toward the end.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant analysis of the multidimensional Martinez Alonso–Shabat equation\",\"authors\":\"Naseem Abbas, Akhtar Hussain, Muhammad Waseem Akram, Shah Muhammad, Mohammad Shuaib\",\"doi\":\"10.1515/zna-2024-0115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This present study is concerned with the group-invariant solutions of the (3 + 1)-dimensional Martinez Alonso–Shabat equation by using the Lie symmetry method. The Lie transformation technique is used to deduce the infinitesimals, Lie symmetry operators, commutation relations, and symmetry reductions. The optimal system for the obtained Lie symmetry algebra is obtained by using the concept of the adjoint map. As for now, the considered model equation is converted into nonlinear ordinary differential equations (ODEs) in two cases in the symmetry reductions. The exact closed-form solutions are obtained by applying constraint conditions on the symmetry generators. Due to the presence of arbitrary functional parameters, these group-invariant solutions are displayed based on suitable numerical simulations. The conservation laws are obtained by using the multiplier method. The conclusion is accounted for toward the end.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2024-0115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2024-0115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用李对称方法研究 (3 + 1) 维马丁内斯-阿隆索-沙巴方程的群不变解。本研究利用李氏变换技术推导出无穷小、李氏对称算子、换元关系和对称性还原。利用邻接图的概念,可以得到所获得的李对称代数的最优系统。目前,所考虑的模型方程在对称性还原的两种情况下被转换为非线性常微分方程(ODE)。通过对对称生成器施加约束条件,可以得到精确的闭式解。由于存在任意函数参数,这些组不变解是基于适当的数值模拟显示出来的。守恒定律是通过乘法器方法获得的。最后给出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant analysis of the multidimensional Martinez Alonso–Shabat equation
This present study is concerned with the group-invariant solutions of the (3 + 1)-dimensional Martinez Alonso–Shabat equation by using the Lie symmetry method. The Lie transformation technique is used to deduce the infinitesimals, Lie symmetry operators, commutation relations, and symmetry reductions. The optimal system for the obtained Lie symmetry algebra is obtained by using the concept of the adjoint map. As for now, the considered model equation is converted into nonlinear ordinary differential equations (ODEs) in two cases in the symmetry reductions. The exact closed-form solutions are obtained by applying constraint conditions on the symmetry generators. Due to the presence of arbitrary functional parameters, these group-invariant solutions are displayed based on suitable numerical simulations. The conservation laws are obtained by using the multiplier method. The conclusion is accounted for toward the end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信