基于谷歌云平台服务器的突发负载频率预测

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hui Wang
{"title":"基于谷歌云平台服务器的突发负载频率预测","authors":"Hui Wang","doi":"10.1109/TCC.2024.3449884","DOIUrl":null,"url":null,"abstract":"The widespread use of cloud computing platforms has increased server load pressure. Especially the frequent occurrence of burst load problems caused resource waste, data damage and loss, and security loopholes, which have posed a severe threat to the service capabilities and stability of the cloud platform. To reduce or avoid the harm caused by burst load problems, this article conducts in-depth research on the frequency of burst loads. Based on Google cluster tracking data, this paper proposes a new burst load frequency calculation model called the ”Two-step Judgment” and a burst load frequency prediction model called the ”Combined-LSTM. ” The Two-step Judgment model uses data attributes for rough judgment and then uses the random forest algorithm for precise judgment to ensure accurate calculation of the frequency of burst loads. The Combined-LSTM model is a multi-input single-output prediction model constructed using a multi-model ensemble method. This model combines the advantages of the 1-Dimensional Convolutional Neural Network(1D-CNN), Gated Recurrent Unit(GRU), and Long Short-Term Memory(LSTM) and uses parallel computing methods to achieve accurate prediction of burst load frequency. According to the model evaluation, the Two-step Judgment model and the Combined-LSTM model showed significant advantages over other prediction models in accuracy, generalization ability, and time complexity.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1158-1171"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burst Load Frequency Prediction Based on Google Cloud Platform Server\",\"authors\":\"Hui Wang\",\"doi\":\"10.1109/TCC.2024.3449884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of cloud computing platforms has increased server load pressure. Especially the frequent occurrence of burst load problems caused resource waste, data damage and loss, and security loopholes, which have posed a severe threat to the service capabilities and stability of the cloud platform. To reduce or avoid the harm caused by burst load problems, this article conducts in-depth research on the frequency of burst loads. Based on Google cluster tracking data, this paper proposes a new burst load frequency calculation model called the ”Two-step Judgment” and a burst load frequency prediction model called the ”Combined-LSTM. ” The Two-step Judgment model uses data attributes for rough judgment and then uses the random forest algorithm for precise judgment to ensure accurate calculation of the frequency of burst loads. The Combined-LSTM model is a multi-input single-output prediction model constructed using a multi-model ensemble method. This model combines the advantages of the 1-Dimensional Convolutional Neural Network(1D-CNN), Gated Recurrent Unit(GRU), and Long Short-Term Memory(LSTM) and uses parallel computing methods to achieve accurate prediction of burst load frequency. According to the model evaluation, the Two-step Judgment model and the Combined-LSTM model showed significant advantages over other prediction models in accuracy, generalization ability, and time complexity.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 4\",\"pages\":\"1158-1171\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10648879/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10648879/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Burst Load Frequency Prediction Based on Google Cloud Platform Server
The widespread use of cloud computing platforms has increased server load pressure. Especially the frequent occurrence of burst load problems caused resource waste, data damage and loss, and security loopholes, which have posed a severe threat to the service capabilities and stability of the cloud platform. To reduce or avoid the harm caused by burst load problems, this article conducts in-depth research on the frequency of burst loads. Based on Google cluster tracking data, this paper proposes a new burst load frequency calculation model called the ”Two-step Judgment” and a burst load frequency prediction model called the ”Combined-LSTM. ” The Two-step Judgment model uses data attributes for rough judgment and then uses the random forest algorithm for precise judgment to ensure accurate calculation of the frequency of burst loads. The Combined-LSTM model is a multi-input single-output prediction model constructed using a multi-model ensemble method. This model combines the advantages of the 1-Dimensional Convolutional Neural Network(1D-CNN), Gated Recurrent Unit(GRU), and Long Short-Term Memory(LSTM) and uses parallel computing methods to achieve accurate prediction of burst load frequency. According to the model evaluation, the Two-step Judgment model and the Combined-LSTM model showed significant advantages over other prediction models in accuracy, generalization ability, and time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信