用于跨物联网-边缘连续性多媒体分析的生成对抗式隐私保护

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xin Wang;Jianhui Lv;Byung-Gyu Kim;Carsten Maple;B. D. Parameshachari;Adam Slowik;Keqin Li
{"title":"用于跨物联网-边缘连续性多媒体分析的生成对抗式隐私保护","authors":"Xin Wang;Jianhui Lv;Byung-Gyu Kim;Carsten Maple;B. D. Parameshachari;Adam Slowik;Keqin Li","doi":"10.1109/TCC.2024.3459789","DOIUrl":null,"url":null,"abstract":"The proliferation of multimedia-enabled IoT devices and edge computing enables a new class of data-intensive applications. However, analyzing the massive volumes of multimedia data presents significant privacy challenges. We propose a novel framework called generative adversarial privacy (GAP) that leverages generative adversarial networks (GANs) to synthesize privacy-preserving surrogate data for multimedia analytics across the IoT-Edge continuum. GAP carefully perturbs the GAN's training process to provide rigorous differential privacy guarantees without compromising utility. Moreover, we present optimization strategies, including dynamic privacy budget allocation, adaptive gradient clipping, and weight clustering to improve convergence and data quality under a constrained privacy budget. Theoretical analysis proves that GAP provides rigorous privacy protections while enabling high-fidelity analytics. Extensive experiments on real-world multimedia datasets demonstrate that GAP outperforms existing methods, producing high-quality synthetic data for privacy-preserving multimedia processing in diverse IoT-Edge applications.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1260-1272"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum\",\"authors\":\"Xin Wang;Jianhui Lv;Byung-Gyu Kim;Carsten Maple;B. D. Parameshachari;Adam Slowik;Keqin Li\",\"doi\":\"10.1109/TCC.2024.3459789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of multimedia-enabled IoT devices and edge computing enables a new class of data-intensive applications. However, analyzing the massive volumes of multimedia data presents significant privacy challenges. We propose a novel framework called generative adversarial privacy (GAP) that leverages generative adversarial networks (GANs) to synthesize privacy-preserving surrogate data for multimedia analytics across the IoT-Edge continuum. GAP carefully perturbs the GAN's training process to provide rigorous differential privacy guarantees without compromising utility. Moreover, we present optimization strategies, including dynamic privacy budget allocation, adaptive gradient clipping, and weight clustering to improve convergence and data quality under a constrained privacy budget. Theoretical analysis proves that GAP provides rigorous privacy protections while enabling high-fidelity analytics. Extensive experiments on real-world multimedia datasets demonstrate that GAP outperforms existing methods, producing high-quality synthetic data for privacy-preserving multimedia processing in diverse IoT-Edge applications.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 4\",\"pages\":\"1260-1272\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679090/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679090/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum
The proliferation of multimedia-enabled IoT devices and edge computing enables a new class of data-intensive applications. However, analyzing the massive volumes of multimedia data presents significant privacy challenges. We propose a novel framework called generative adversarial privacy (GAP) that leverages generative adversarial networks (GANs) to synthesize privacy-preserving surrogate data for multimedia analytics across the IoT-Edge continuum. GAP carefully perturbs the GAN's training process to provide rigorous differential privacy guarantees without compromising utility. Moreover, we present optimization strategies, including dynamic privacy budget allocation, adaptive gradient clipping, and weight clustering to improve convergence and data quality under a constrained privacy budget. Theoretical analysis proves that GAP provides rigorous privacy protections while enabling high-fidelity analytics. Extensive experiments on real-world multimedia datasets demonstrate that GAP outperforms existing methods, producing high-quality synthetic data for privacy-preserving multimedia processing in diverse IoT-Edge applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信