具有奇异性的薛定谔-麦克斯韦系统正解的存在性和规律性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Abdelaaziz Sbai, Youssef El Hadfi, Mounim El Ouardy
{"title":"具有奇异性的薛定谔-麦克斯韦系统正解的存在性和规律性","authors":"Abdelaaziz Sbai,&nbsp;Youssef El Hadfi,&nbsp;Mounim El Ouardy","doi":"10.1007/s10440-024-00679-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the existence of positive solutions for the following Schrödinger–Maxwell system of singular elliptic equations </p><div><div><span>$$ \\textstyle\\begin{cases} -\\operatorname{div}(A(x) \\nabla u)+\\psi u^{r-1}= \\frac{f(x)}{u^{\\theta }} &amp; \\text{ in } \\Omega , \\\\ -\\operatorname{div}(M(x) \\psi )=u^{r} &amp; \\text{ in } \\Omega , \\\\ u, \\psi &gt;0 &amp; \\text{ in } \\Omega , \\\\ u=\\psi =0 &amp; \\text{ on } \\partial \\Omega ,\\end{cases} $$</span></div><div>\n (1)\n </div></div><p> where <span>\\(\\Omega \\)</span> is a bounded open set of <span>\\(\\mathbb{R}^{N}, N&gt;2\\)</span>, <span>\\(r&gt;1\\)</span>, <span>\\(0 &lt; \\theta &lt;1\\)</span> and <span>\\(f\\)</span> is nonnegative function belongs to a suitable Lebesgue space. In particular, we take advantage of the coupling between the two equations of the system by proving how the structure of the system gives rise to a regularizing effect on the summability of the solutions.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Regularity of Positive Solutions for Schrödinger-Maxwell System with Singularity\",\"authors\":\"Abdelaaziz Sbai,&nbsp;Youssef El Hadfi,&nbsp;Mounim El Ouardy\",\"doi\":\"10.1007/s10440-024-00679-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the existence of positive solutions for the following Schrödinger–Maxwell system of singular elliptic equations </p><div><div><span>$$ \\\\textstyle\\\\begin{cases} -\\\\operatorname{div}(A(x) \\\\nabla u)+\\\\psi u^{r-1}= \\\\frac{f(x)}{u^{\\\\theta }} &amp; \\\\text{ in } \\\\Omega , \\\\\\\\ -\\\\operatorname{div}(M(x) \\\\psi )=u^{r} &amp; \\\\text{ in } \\\\Omega , \\\\\\\\ u, \\\\psi &gt;0 &amp; \\\\text{ in } \\\\Omega , \\\\\\\\ u=\\\\psi =0 &amp; \\\\text{ on } \\\\partial \\\\Omega ,\\\\end{cases} $$</span></div><div>\\n (1)\\n </div></div><p> where <span>\\\\(\\\\Omega \\\\)</span> is a bounded open set of <span>\\\\(\\\\mathbb{R}^{N}, N&gt;2\\\\)</span>, <span>\\\\(r&gt;1\\\\)</span>, <span>\\\\(0 &lt; \\\\theta &lt;1\\\\)</span> and <span>\\\\(f\\\\)</span> is nonnegative function belongs to a suitable Lebesgue space. In particular, we take advantage of the coupling between the two equations of the system by proving how the structure of the system gives rise to a regularizing effect on the summability of the solutions.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00679-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00679-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以下薛定谔-麦克斯韦奇异椭圆方程系统正解的存在性 $$ \textstyle\begin{cases} -\operatorname{div}(A(x) \nabla u)+\psi u^{r-1}= \frac{f(x)}{u^{\theta }} & \text{ in }\操作者名稱{div}(M(x))=u^{r} & (text{ in }\u, \psi \gt;0 \amp; \text{ in }\u=psi =0 & (對)\(1) 其中 \(\Omega \) 是 \(\mathbb{R}^{N}, N>2\) 的有界开集, \(r>1\), \(0 < \theta <1\) 并且 \(f\) 是属于合适的 Lebesgue 空间的非负函数。特别是,我们利用系统两个方程之间的耦合,证明了系统结构如何对解的可求和性产生正则效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Regularity of Positive Solutions for Schrödinger-Maxwell System with Singularity

In this paper we study the existence of positive solutions for the following Schrödinger–Maxwell system of singular elliptic equations

$$ \textstyle\begin{cases} -\operatorname{div}(A(x) \nabla u)+\psi u^{r-1}= \frac{f(x)}{u^{\theta }} & \text{ in } \Omega , \\ -\operatorname{div}(M(x) \psi )=u^{r} & \text{ in } \Omega , \\ u, \psi >0 & \text{ in } \Omega , \\ u=\psi =0 & \text{ on } \partial \Omega ,\end{cases} $$
(1)

where \(\Omega \) is a bounded open set of \(\mathbb{R}^{N}, N>2\), \(r>1\), \(0 < \theta <1\) and \(f\) is nonnegative function belongs to a suitable Lebesgue space. In particular, we take advantage of the coupling between the two equations of the system by proving how the structure of the system gives rise to a regularizing effect on the summability of the solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信