学会以最佳方式停止扩散过程

Min Dai, Yu Sun, Zuo Quan Xu, Xun Yu Zhou
{"title":"学会以最佳方式停止扩散过程","authors":"Min Dai, Yu Sun, Zuo Quan Xu, Xun Yu Zhou","doi":"arxiv-2408.09242","DOIUrl":null,"url":null,"abstract":"We study optimal stopping for a diffusion process with unknown model\nprimitives within the continuous-time reinforcement learning (RL) framework\ndeveloped by Wang et al. (2020). By penalizing its variational inequality, we\ntransform the stopping problem into a stochastic optimal control problem with\ntwo actions. We then randomize control into Bernoulli distributions and add an\nentropy regularizer to encourage exploration. We derive a semi-analytical\noptimal Bernoulli distribution, based on which we devise RL algorithms using\nthe martingale approach established in Jia and Zhou (2022a) and prove a policy\nimprovement theorem. Finally, we demonstrate the effectiveness of the\nalgorithms in examples of pricing finite-horizon American put options and\nsolving Merton's problem with transaction costs, and show that both the offline\nand online algorithms achieve high accuracy in learning the value functions and\ncharacterizing the associated free boundaries.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Optimally Stop a Diffusion Process\",\"authors\":\"Min Dai, Yu Sun, Zuo Quan Xu, Xun Yu Zhou\",\"doi\":\"arxiv-2408.09242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study optimal stopping for a diffusion process with unknown model\\nprimitives within the continuous-time reinforcement learning (RL) framework\\ndeveloped by Wang et al. (2020). By penalizing its variational inequality, we\\ntransform the stopping problem into a stochastic optimal control problem with\\ntwo actions. We then randomize control into Bernoulli distributions and add an\\nentropy regularizer to encourage exploration. We derive a semi-analytical\\noptimal Bernoulli distribution, based on which we devise RL algorithms using\\nthe martingale approach established in Jia and Zhou (2022a) and prove a policy\\nimprovement theorem. Finally, we demonstrate the effectiveness of the\\nalgorithms in examples of pricing finite-horizon American put options and\\nsolving Merton's problem with transaction costs, and show that both the offline\\nand online algorithms achieve high accuracy in learning the value functions and\\ncharacterizing the associated free boundaries.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在 Wang 等人(2020)提出的连续时间强化学习(RL)框架内研究了具有未知模型原型的扩散过程的最优停止问题。通过对其变分不等式进行惩罚,我们将停止问题转化为一个具有两个动作的随机最优控制问题。然后,我们将控制随机化为伯努利分布,并添加熵正则来鼓励探索。在此基础上,我们利用贾和周(2022a)建立的马丁格尔方法设计了 RL 算法,并证明了策略改进定理。最后,我们以有限区间美式看跌期权定价和解决有交易成本的默顿问题为例,证明了算法的有效性,并表明离线算法和在线算法在学习价值函数和描述相关自由边界方面都达到了很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Optimally Stop a Diffusion Process
We study optimal stopping for a diffusion process with unknown model primitives within the continuous-time reinforcement learning (RL) framework developed by Wang et al. (2020). By penalizing its variational inequality, we transform the stopping problem into a stochastic optimal control problem with two actions. We then randomize control into Bernoulli distributions and add an entropy regularizer to encourage exploration. We derive a semi-analytical optimal Bernoulli distribution, based on which we devise RL algorithms using the martingale approach established in Jia and Zhou (2022a) and prove a policy improvement theorem. Finally, we demonstrate the effectiveness of the algorithms in examples of pricing finite-horizon American put options and solving Merton's problem with transaction costs, and show that both the offline and online algorithms achieve high accuracy in learning the value functions and characterizing the associated free boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信