溪流食物网中基础资源的营养质量随光照减少而提高--对河岸植被恢复的影响

IF 3.3 3区 生物学 Q2 ECOLOGY
Ke Zhang, Xiang Tan, Quanfa Zhang
{"title":"溪流食物网中基础资源的营养质量随光照减少而提高--对河岸植被恢复的影响","authors":"Ke Zhang, Xiang Tan, Quanfa Zhang","doi":"10.1007/s00248-024-02432-w","DOIUrl":null,"url":null,"abstract":"<p>Biofilms are considered a basal resource with high nutritional quality in stream food webs, as periphytic algae are abundant of polyunsaturated fatty acids (PUFAs). PUFAs are essential for growth and reproduction of consumers who cannot or have very limited capacity to biosynthesize. Yet, how the nutritional quality based on PUFA of basal food sources changes with light intensity remains unclear. We conducted a manipulative experiment in mesocosms to explore the response and mechanisms of nutritional quality to shading, simulating riparian restoration. We found a significant increase in PUFA% (including arachidonic acid, ARA) under shading conditions. The increased PUFA is caused by the algal community succession from Cyanobacteria and Chlorophyta to Bacillariophyta which is abundant of PUFA (especially eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA). On the other hand, shading increased PUFA via upregulating enzymes such as Δ12 desaturase (FAD2, EC:1.14.19.6) and 3-ketoacyl-CoA synthase (KCS, EC:2.3.1.199) in the biosynthesis of unsaturated fatty acid elongation pathways. Our findings imply that riparian reforestation by decreasing light intensity increases the nutritional quality of basal resources in streams, which may enhance transfer of good quality carbon to consumers in higher trophic levels through bottom-up effects.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"4 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nutritional Quality of Basal Resource in Stream Food Webs Increased with Light Reduction—Implications for Riparian Revegetation\",\"authors\":\"Ke Zhang, Xiang Tan, Quanfa Zhang\",\"doi\":\"10.1007/s00248-024-02432-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biofilms are considered a basal resource with high nutritional quality in stream food webs, as periphytic algae are abundant of polyunsaturated fatty acids (PUFAs). PUFAs are essential for growth and reproduction of consumers who cannot or have very limited capacity to biosynthesize. Yet, how the nutritional quality based on PUFA of basal food sources changes with light intensity remains unclear. We conducted a manipulative experiment in mesocosms to explore the response and mechanisms of nutritional quality to shading, simulating riparian restoration. We found a significant increase in PUFA% (including arachidonic acid, ARA) under shading conditions. The increased PUFA is caused by the algal community succession from Cyanobacteria and Chlorophyta to Bacillariophyta which is abundant of PUFA (especially eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA). On the other hand, shading increased PUFA via upregulating enzymes such as Δ12 desaturase (FAD2, EC:1.14.19.6) and 3-ketoacyl-CoA synthase (KCS, EC:2.3.1.199) in the biosynthesis of unsaturated fatty acid elongation pathways. Our findings imply that riparian reforestation by decreasing light intensity increases the nutritional quality of basal resources in streams, which may enhance transfer of good quality carbon to consumers in higher trophic levels through bottom-up effects.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-024-02432-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02432-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物膜被认为是溪流食物网中营养质量较高的基础资源,因为附生藻类含有丰富的多不饱和脂肪酸(PUFA)。多不饱和脂肪酸对不能或仅有有限生物合成能力的消费者的生长和繁殖至关重要。然而,基于基础食物来源的多不饱和脂肪酸的营养质量如何随光照强度变化仍不清楚。我们在模拟河岸恢复的中观模拟实验中探索了营养质量对遮光的反应和机制。我们发现,在遮光条件下,PUFA%(包括花生四烯酸,ARA)明显增加。PUFA 增加的原因是藻类群落从蓝藻和叶绿藻向芽孢藻演替,而芽孢藻含有丰富的 PUFA(尤其是二十碳五烯酸,EPA;二十二碳六烯酸,DHA)。另一方面,遮荫通过上调不饱和脂肪酸生物合成伸长途径中的Δ12去饱和酶(FAD2,EC:1.14.19.6)和3-酮酰-CoA合成酶(KCS,EC:2.3.1.199)等酶,增加了PUFA。我们的研究结果表明,通过降低光照强度进行河岸造林可提高溪流中基质资源的营养质量,这可能会通过自下而上的效应促进优质碳向更高营养级的消费者转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nutritional Quality of Basal Resource in Stream Food Webs Increased with Light Reduction—Implications for Riparian Revegetation

Nutritional Quality of Basal Resource in Stream Food Webs Increased with Light Reduction—Implications for Riparian Revegetation

Biofilms are considered a basal resource with high nutritional quality in stream food webs, as periphytic algae are abundant of polyunsaturated fatty acids (PUFAs). PUFAs are essential for growth and reproduction of consumers who cannot or have very limited capacity to biosynthesize. Yet, how the nutritional quality based on PUFA of basal food sources changes with light intensity remains unclear. We conducted a manipulative experiment in mesocosms to explore the response and mechanisms of nutritional quality to shading, simulating riparian restoration. We found a significant increase in PUFA% (including arachidonic acid, ARA) under shading conditions. The increased PUFA is caused by the algal community succession from Cyanobacteria and Chlorophyta to Bacillariophyta which is abundant of PUFA (especially eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA). On the other hand, shading increased PUFA via upregulating enzymes such as Δ12 desaturase (FAD2, EC:1.14.19.6) and 3-ketoacyl-CoA synthase (KCS, EC:2.3.1.199) in the biosynthesis of unsaturated fatty acid elongation pathways. Our findings imply that riparian reforestation by decreasing light intensity increases the nutritional quality of basal resources in streams, which may enhance transfer of good quality carbon to consumers in higher trophic levels through bottom-up effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信