{"title":"日珥爆发过程中耀斑带的运动学特征","authors":"B. P. Filippov","doi":"10.1134/S0016793224600279","DOIUrl":null,"url":null,"abstract":"<p>Flare ribbons formed in solar two-ribbon flares after eruptions of prominences diverge in opposite directions from the polarity inversion line of the photospheric longitudinal magnetic field, sharply slowing down with time and distance from this line. Examples of such events are given, and the kinematics of flare ribbons is demonstrated. A comparison of the position of the ribbons with the distribution of the photospheric magnetic field shows that the separation of the ribbons slows down when they enter a region of a strong longitudinal field. A simple model of prominence eruption illustrates the kinematic features of the motion of the ribbons and the relation to the sources of the coronal magnetic field in the photosphere.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics of Flare Ribbons during Eruption of Solar Prominences\",\"authors\":\"B. P. Filippov\",\"doi\":\"10.1134/S0016793224600279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flare ribbons formed in solar two-ribbon flares after eruptions of prominences diverge in opposite directions from the polarity inversion line of the photospheric longitudinal magnetic field, sharply slowing down with time and distance from this line. Examples of such events are given, and the kinematics of flare ribbons is demonstrated. A comparison of the position of the ribbons with the distribution of the photospheric magnetic field shows that the separation of the ribbons slows down when they enter a region of a strong longitudinal field. A simple model of prominence eruption illustrates the kinematic features of the motion of the ribbons and the relation to the sources of the coronal magnetic field in the photosphere.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600279\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600279","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Kinematics of Flare Ribbons during Eruption of Solar Prominences
Flare ribbons formed in solar two-ribbon flares after eruptions of prominences diverge in opposite directions from the polarity inversion line of the photospheric longitudinal magnetic field, sharply slowing down with time and distance from this line. Examples of such events are given, and the kinematics of flare ribbons is demonstrated. A comparison of the position of the ribbons with the distribution of the photospheric magnetic field shows that the separation of the ribbons slows down when they enter a region of a strong longitudinal field. A simple model of prominence eruption illustrates the kinematic features of the motion of the ribbons and the relation to the sources of the coronal magnetic field in the photosphere.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.