2003 年阿尔泰戈尔诺丘雅地震余震期间的电磁监测:测量技术和结果

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
A. E. Shalaginov, N. N. Nevedrova
{"title":"2003 年阿尔泰戈尔诺丘雅地震余震期间的电磁监测:测量技术和结果","authors":"A. E. Shalaginov,&nbsp;N. N. Nevedrova","doi":"10.1134/S0016793224600401","DOIUrl":null,"url":null,"abstract":"<p>The article discusses the observation methodology, data interpretation, and results of electromagnetic monitoring with a controlled source for one of the seismically active regions of Siberia—Gorny Altai. Monitoring was carried out during the aftershock period in the epicentral zone of the destructive 2003 Chuya earthquake with M = 7.3. For regular observations, a measurement technique has been developed using several modifications of the transient electromagnetic field (TEM) method to determine variations in electrical resistance and the anisotropy coefficient. Long-term series of these two geoelectric parameters of the section are presented, compared with the characteristics of ongoing seismic events. As a result of the analysis, it was shown that variations in electrical resistance and the electrical anisotropy coefficient reflect the development and gradual decay of the aftershock activity of a powerful earthquake. The advantages of the TEM method and the selected technique for monitoring in complex areas are reflected.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Monitoring During the Aftershock Period of the 2003 Chuya Earthquake in Gorny Altai: Measurement Technique and Results\",\"authors\":\"A. E. Shalaginov,&nbsp;N. N. Nevedrova\",\"doi\":\"10.1134/S0016793224600401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article discusses the observation methodology, data interpretation, and results of electromagnetic monitoring with a controlled source for one of the seismically active regions of Siberia—Gorny Altai. Monitoring was carried out during the aftershock period in the epicentral zone of the destructive 2003 Chuya earthquake with M = 7.3. For regular observations, a measurement technique has been developed using several modifications of the transient electromagnetic field (TEM) method to determine variations in electrical resistance and the anisotropy coefficient. Long-term series of these two geoelectric parameters of the section are presented, compared with the characteristics of ongoing seismic events. As a result of the analysis, it was shown that variations in electrical resistance and the electrical anisotropy coefficient reflect the development and gradual decay of the aftershock activity of a powerful earthquake. The advantages of the TEM method and the selected technique for monitoring in complex areas are reflected.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600401\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600401","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文讨论了西伯利亚地震活跃地区之一--戈尔诺-阿尔泰的观测方法、数据解释以及使用受控震源进行电磁监测的结果。在 2003 年 M = 7.3 的楚雅破坏性地震震中区的余震期间进行了监测。为进行定期观测,开发了一种测量技术,利用对瞬态电磁场(TEM)方法的若干修改来确定电阻和各向异性系数的变化。将该断面这两个地质电参数的长期序列与正在发生的地震事件的特征进行比较。分析结果表明,电阻和电各向异性系数的变化反映了强震余震活动的发展和逐渐衰减。这反映了 TEM 方法和所选技术在复杂地区监测方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electromagnetic Monitoring During the Aftershock Period of the 2003 Chuya Earthquake in Gorny Altai: Measurement Technique and Results

Electromagnetic Monitoring During the Aftershock Period of the 2003 Chuya Earthquake in Gorny Altai: Measurement Technique and Results

Electromagnetic Monitoring During the Aftershock Period of the 2003 Chuya Earthquake in Gorny Altai: Measurement Technique and Results

The article discusses the observation methodology, data interpretation, and results of electromagnetic monitoring with a controlled source for one of the seismically active regions of Siberia—Gorny Altai. Monitoring was carried out during the aftershock period in the epicentral zone of the destructive 2003 Chuya earthquake with M = 7.3. For regular observations, a measurement technique has been developed using several modifications of the transient electromagnetic field (TEM) method to determine variations in electrical resistance and the anisotropy coefficient. Long-term series of these two geoelectric parameters of the section are presented, compared with the characteristics of ongoing seismic events. As a result of the analysis, it was shown that variations in electrical resistance and the electrical anisotropy coefficient reflect the development and gradual decay of the aftershock activity of a powerful earthquake. The advantages of the TEM method and the selected technique for monitoring in complex areas are reflected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信