极地 "亚暴和哈朗不连续面

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
N. G. Kleimenova, L. I. Gromova, S. V. Gromov, L. M. Malysheva, I. V. Despirak
{"title":"极地 \"亚暴和哈朗不连续面","authors":"N. G. Kleimenova,&nbsp;L. I. Gromova,&nbsp;S. V. Gromov,&nbsp;L. M. Malysheva,&nbsp;I. V. Despirak","doi":"10.1134/S0016793224600310","DOIUrl":null,"url":null,"abstract":"<p>We analyzed 214 events of ‘polar’ substorms on the Scandinavian meridian IMAGE, i.e., substorms recorded by magnetometers located at geomagnetic latitudes above ~70° MLAT at 1900−0200 MLT during a magnetically quiet time in the absence of negative magnetic bays at lower latitudes. The Harang discontinuity, which separates the westward and eastward electrojets by latitude, is a typical structure for the indicated MLT sector of the high-latitude ionosphere. The global distribution of ionospheric electrojets and the location of the Harang discontinuity during development of ‘polar’ substorms were studied using the maps compiled from the results of spherical harmonic analysis of magnetic measurements on 66 simultaneous ionospheric communications satellites of the AMPERE project. Based on analysis of these maps, it is shown that the instantaneous location of the equatorial boundary of the ionospheric current of a ‘polar’ substorm determines the instantaneous location of the polar boundary of the Harang discontinuity, and the polar boundary of the eastward electrojet determines its equatorial boundary. It has been established that the appearance of 90% of ‘polar’ substorms is observed simultaneously with increasing planetary substorm activity according to the <i>AL</i>-index and development of a magnetospheric substorm in the postmidnight sector. At the same time, the development of evening ‘polar’ substorms is associated with the formation of near-midnight magnetic vortices at geomagnetic latitudes of ~70° MLAT (near the “nose” of the Harang discontinuity), indicating a sharp local enhancement of the field-aligned currents. This leads to the formation of a new substorm in the evening sector of near-polar latitudes, called a ‘polar’ substorm with typical features of the onset of a substorm (<i>Pi</i>2 geomagnetic pulsation bursts, sudden onset of the substorm close to the equatorial boundary of the contracted oval (the development of a “substorm current wedge”, etc.)</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"‘Polar’ Substorms and the Harang Discontinuity\",\"authors\":\"N. G. Kleimenova,&nbsp;L. I. Gromova,&nbsp;S. V. Gromov,&nbsp;L. M. Malysheva,&nbsp;I. V. Despirak\",\"doi\":\"10.1134/S0016793224600310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyzed 214 events of ‘polar’ substorms on the Scandinavian meridian IMAGE, i.e., substorms recorded by magnetometers located at geomagnetic latitudes above ~70° MLAT at 1900−0200 MLT during a magnetically quiet time in the absence of negative magnetic bays at lower latitudes. The Harang discontinuity, which separates the westward and eastward electrojets by latitude, is a typical structure for the indicated MLT sector of the high-latitude ionosphere. The global distribution of ionospheric electrojets and the location of the Harang discontinuity during development of ‘polar’ substorms were studied using the maps compiled from the results of spherical harmonic analysis of magnetic measurements on 66 simultaneous ionospheric communications satellites of the AMPERE project. Based on analysis of these maps, it is shown that the instantaneous location of the equatorial boundary of the ionospheric current of a ‘polar’ substorm determines the instantaneous location of the polar boundary of the Harang discontinuity, and the polar boundary of the eastward electrojet determines its equatorial boundary. It has been established that the appearance of 90% of ‘polar’ substorms is observed simultaneously with increasing planetary substorm activity according to the <i>AL</i>-index and development of a magnetospheric substorm in the postmidnight sector. At the same time, the development of evening ‘polar’ substorms is associated with the formation of near-midnight magnetic vortices at geomagnetic latitudes of ~70° MLAT (near the “nose” of the Harang discontinuity), indicating a sharp local enhancement of the field-aligned currents. This leads to the formation of a new substorm in the evening sector of near-polar latitudes, called a ‘polar’ substorm with typical features of the onset of a substorm (<i>Pi</i>2 geomagnetic pulsation bursts, sudden onset of the substorm close to the equatorial boundary of the contracted oval (the development of a “substorm current wedge”, etc.)</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600310\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600310","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们分析了斯堪的纳维亚经线 IMAGE 上的 214 次 "极地 "亚暴事件,即位于地磁纬度约 70° MLAT 以上的磁强计在 1900-0200 MLT 期间记录到的亚暴,当时磁场安静,低纬度没有负磁湾。按纬度分隔向西和向东电射流的哈朗不连续性是高纬度电离层指示中纬度区段的典型结构。利用对 AMPERE 项目 66 颗同步电离层通信卫星的磁测量结果进行球谐波分析后绘制的地图,对 "极地 "亚暴发展过程中电离层电射流的全球分布和哈朗不连续面的位置进行了研究。对这些地图的分析表明,"极地 "亚暴电离层电流赤道边界的瞬时位置决定了哈朗不连续面极地边界的瞬时位置,而向东电喷流的极地边界决定了其赤道边界。根据 AL 指数和午夜后扇区磁层亚暴的发展情况,90% 的 "极地 "亚暴的出现与行星亚暴活动的增加同时发生。与此同时,晚间 "极地 "亚暴的发展与地磁纬度约 70° MLAT(靠近哈朗不连续面的 "鼻子")处近午夜磁涡旋的形成有关,这表明场对齐电流在局部急剧增强。这导致在近极地纬度的傍晚扇区形成一个新的亚暴,称为 "极地 "亚暴,具有亚暴开始时的典型特征(Pi2 地磁脉动爆发、亚暴在靠近收缩椭圆赤道边界处突然开始(形成 "亚暴流楔 "等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

‘Polar’ Substorms and the Harang Discontinuity

‘Polar’ Substorms and the Harang Discontinuity

‘Polar’ Substorms and the Harang Discontinuity

We analyzed 214 events of ‘polar’ substorms on the Scandinavian meridian IMAGE, i.e., substorms recorded by magnetometers located at geomagnetic latitudes above ~70° MLAT at 1900−0200 MLT during a magnetically quiet time in the absence of negative magnetic bays at lower latitudes. The Harang discontinuity, which separates the westward and eastward electrojets by latitude, is a typical structure for the indicated MLT sector of the high-latitude ionosphere. The global distribution of ionospheric electrojets and the location of the Harang discontinuity during development of ‘polar’ substorms were studied using the maps compiled from the results of spherical harmonic analysis of magnetic measurements on 66 simultaneous ionospheric communications satellites of the AMPERE project. Based on analysis of these maps, it is shown that the instantaneous location of the equatorial boundary of the ionospheric current of a ‘polar’ substorm determines the instantaneous location of the polar boundary of the Harang discontinuity, and the polar boundary of the eastward electrojet determines its equatorial boundary. It has been established that the appearance of 90% of ‘polar’ substorms is observed simultaneously with increasing planetary substorm activity according to the AL-index and development of a magnetospheric substorm in the postmidnight sector. At the same time, the development of evening ‘polar’ substorms is associated with the formation of near-midnight magnetic vortices at geomagnetic latitudes of ~70° MLAT (near the “nose” of the Harang discontinuity), indicating a sharp local enhancement of the field-aligned currents. This leads to the formation of a new substorm in the evening sector of near-polar latitudes, called a ‘polar’ substorm with typical features of the onset of a substorm (Pi2 geomagnetic pulsation bursts, sudden onset of the substorm close to the equatorial boundary of the contracted oval (the development of a “substorm current wedge”, etc.)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信