检验格兰杰因果关系的贝叶斯灵活模型

IF 2 Q2 ECONOMICS
Iván Gutiérrez, Danilo Alvares, Luis Gutiérrez
{"title":"检验格兰杰因果关系的贝叶斯灵活模型","authors":"Iván Gutiérrez, Danilo Alvares, Luis Gutiérrez","doi":"10.1016/j.ecosta.2024.08.001","DOIUrl":null,"url":null,"abstract":"A new Bayesian hypothesis testing procedure for evaluating the Granger causality between two or more time series is proposed. The test is based on a flexible model for the joint evolution of multiple series, where a latent binary matrix indicates whether there is a Granger-causal relationship between such time series. The model is specified through a dependent Geometric stick-breaking process that generalizes the standard parametric Gaussian vector autoregression model, whereas the prior distribution of the latent matrix ensures a multiple testing correction. A Monte Carlo simulation study is provided for comparing the robustness of the proposed hypothesis test with state-of-the-art alternatives. The results show that this proposal performs better than competing approaches. Finally, the new test is applied to real economic data.","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"3 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian flexible model for testing Granger causality\",\"authors\":\"Iván Gutiérrez, Danilo Alvares, Luis Gutiérrez\",\"doi\":\"10.1016/j.ecosta.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new Bayesian hypothesis testing procedure for evaluating the Granger causality between two or more time series is proposed. The test is based on a flexible model for the joint evolution of multiple series, where a latent binary matrix indicates whether there is a Granger-causal relationship between such time series. The model is specified through a dependent Geometric stick-breaking process that generalizes the standard parametric Gaussian vector autoregression model, whereas the prior distribution of the latent matrix ensures a multiple testing correction. A Monte Carlo simulation study is provided for comparing the robustness of the proposed hypothesis test with state-of-the-art alternatives. The results show that this proposal performs better than competing approaches. Finally, the new test is applied to real economic data.\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecosta.2024.08.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2024.08.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的贝叶斯假设检验程序,用于评估两个或多个时间序列之间的格兰杰因果关系。该检验基于一个灵活的多序列联合演化模型,其中一个潜在的二元矩阵表示这些时间序列之间是否存在格兰杰因果关系。该模型是通过一个从属的几何破棒过程来指定的,它概括了标准参数高斯向量自回归模型,而潜矩阵的先验分布则确保了多重检验校正。本文提供了蒙特卡罗模拟研究,以比较建议的假设检验与最先进的替代方法的稳健性。结果表明,该建议的性能优于其他竞争方法。最后,新的检验方法被应用于真实的经济数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian flexible model for testing Granger causality
A new Bayesian hypothesis testing procedure for evaluating the Granger causality between two or more time series is proposed. The test is based on a flexible model for the joint evolution of multiple series, where a latent binary matrix indicates whether there is a Granger-causal relationship between such time series. The model is specified through a dependent Geometric stick-breaking process that generalizes the standard parametric Gaussian vector autoregression model, whereas the prior distribution of the latent matrix ensures a multiple testing correction. A Monte Carlo simulation study is provided for comparing the robustness of the proposed hypothesis test with state-of-the-art alternatives. The results show that this proposal performs better than competing approaches. Finally, the new test is applied to real economic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信