基于条件生成对抗网络的机翼积冰预测

IF 4.1 2区 工程技术 Q1 MECHANICS
Xudong Ma, Yang Zhang, Xiaogang Xu, Hui Wang, Tianbo Wang
{"title":"基于条件生成对抗网络的机翼积冰预测","authors":"Xudong Ma, Yang Zhang, Xiaogang Xu, Hui Wang, Tianbo Wang","doi":"10.1063/5.0223205","DOIUrl":null,"url":null,"abstract":"The ice accretion on the aircraft's surface under low temperatures and high humidity is crucial for flight safety. With respect to the limitation of traditional icing simulation methods, it is very hard to predict exact ice profiles, which can extremely affect the flight performance of an aircraft. A conditional generative adversarial network (CGAN) is utilized to rapidly predict ice accretion and reconstruct three-dimensional ice patterns along the leading edge of a wing. The CGAN is trained using experimental data obtained from a wing with varying sweep angles. The results indicate that the CGAN achieves a high level of accuracy, specifically 97.5%, in predicting the similarity of ice shapes in the test set. When assessing the sample feature capture and prediction capability of the predictive model, it is shown that the CGAN exhibits superior predictive performance across different sample sizes.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wing ice accretion prediction based on conditional generation adversarial network\",\"authors\":\"Xudong Ma, Yang Zhang, Xiaogang Xu, Hui Wang, Tianbo Wang\",\"doi\":\"10.1063/5.0223205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ice accretion on the aircraft's surface under low temperatures and high humidity is crucial for flight safety. With respect to the limitation of traditional icing simulation methods, it is very hard to predict exact ice profiles, which can extremely affect the flight performance of an aircraft. A conditional generative adversarial network (CGAN) is utilized to rapidly predict ice accretion and reconstruct three-dimensional ice patterns along the leading edge of a wing. The CGAN is trained using experimental data obtained from a wing with varying sweep angles. The results indicate that the CGAN achieves a high level of accuracy, specifically 97.5%, in predicting the similarity of ice shapes in the test set. When assessing the sample feature capture and prediction capability of the predictive model, it is shown that the CGAN exhibits superior predictive performance across different sample sizes.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223205\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

低温高湿条件下飞机表面的结冰对飞行安全至关重要。由于传统结冰模拟方法的局限性,很难预测准确的结冰轮廓,这对飞机的飞行性能影响极大。利用条件生成对抗网络(CGAN)可快速预测结冰情况,并重建机翼前缘的三维结冰模式。CGAN 是利用从不同后掠角的机翼上获得的实验数据进行训练的。结果表明,CGAN 在预测测试集中冰形状的相似性方面达到了很高的准确率,具体为 97.5%。在评估预测模型的样本特征捕获和预测能力时,结果表明 CGAN 在不同样本大小的情况下均表现出卓越的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wing ice accretion prediction based on conditional generation adversarial network
The ice accretion on the aircraft's surface under low temperatures and high humidity is crucial for flight safety. With respect to the limitation of traditional icing simulation methods, it is very hard to predict exact ice profiles, which can extremely affect the flight performance of an aircraft. A conditional generative adversarial network (CGAN) is utilized to rapidly predict ice accretion and reconstruct three-dimensional ice patterns along the leading edge of a wing. The CGAN is trained using experimental data obtained from a wing with varying sweep angles. The results indicate that the CGAN achieves a high level of accuracy, specifically 97.5%, in predicting the similarity of ice shapes in the test set. When assessing the sample feature capture and prediction capability of the predictive model, it is shown that the CGAN exhibits superior predictive performance across different sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信