Patrik Oleksak, David Rysanek, Marketa Vancurova, Pavla Vasicova, Alexandra Urbancokova, Josef Novak, Dominika Maurencova, Pavel Kashmel, Jana Houserova, Romana Mikyskova, Ondrej Novotny, Milan Reinis, Pavel Juda, Miroslav Hons, Jirina Kroupova, David Sedlak, Tetyana Sulimenko, Pavel Draber, Marketa Chlubnova, Eugenie Nepovimova, Kamil Kuca, Miroslav Lisa, Rudolf Andrys, Tereza Kobrlova, Ondrej Soukup, Jiri Janousek, Lukas Prchal, Jiri Bartek, Kamil Musilek, Zdenek Hodny
{"title":"发现一种 6-氨基苯并[b]噻吩 1,1-二氧化物衍生物 (K2071),它具有信号转导和转录激活因子 3 抑制、抗嗜血杆菌和抗衰老治疗活性","authors":"Patrik Oleksak, David Rysanek, Marketa Vancurova, Pavla Vasicova, Alexandra Urbancokova, Josef Novak, Dominika Maurencova, Pavel Kashmel, Jana Houserova, Romana Mikyskova, Ondrej Novotny, Milan Reinis, Pavel Juda, Miroslav Hons, Jirina Kroupova, David Sedlak, Tetyana Sulimenko, Pavel Draber, Marketa Chlubnova, Eugenie Nepovimova, Kamil Kuca, Miroslav Lisa, Rudolf Andrys, Tereza Kobrlova, Ondrej Soukup, Jiri Janousek, Lukas Prchal, Jiri Bartek, Kamil Musilek, Zdenek Hodny","doi":"10.1021/acsptsci.4c00190","DOIUrl":null,"url":null,"abstract":"6-Nitrobenzo[<i>b</i>]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[<i>b</i>]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood–brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure–activity relationship analysis of the K2071 molecule revealed the necessity of the <i>para</i>-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of a 6-Aminobenzo[b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities\",\"authors\":\"Patrik Oleksak, David Rysanek, Marketa Vancurova, Pavla Vasicova, Alexandra Urbancokova, Josef Novak, Dominika Maurencova, Pavel Kashmel, Jana Houserova, Romana Mikyskova, Ondrej Novotny, Milan Reinis, Pavel Juda, Miroslav Hons, Jirina Kroupova, David Sedlak, Tetyana Sulimenko, Pavel Draber, Marketa Chlubnova, Eugenie Nepovimova, Kamil Kuca, Miroslav Lisa, Rudolf Andrys, Tereza Kobrlova, Ondrej Soukup, Jiri Janousek, Lukas Prchal, Jiri Bartek, Kamil Musilek, Zdenek Hodny\",\"doi\":\"10.1021/acsptsci.4c00190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"6-Nitrobenzo[<i>b</i>]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[<i>b</i>]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood–brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure–activity relationship analysis of the K2071 molecule revealed the necessity of the <i>para</i>-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.\",\"PeriodicalId\":501473,\"journal\":{\"name\":\"ACS Pharmacology & Translational Science\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology & Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology & Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovery of a 6-Aminobenzo[b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood–brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure–activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.