结肠靶向缓释 5-氟尿嘧啶和槲皮素聚乳酸-共聚乙醇酸 (PLGA) 组合纳米粒子显示出更强的细胞凋亡能力和最小的肿瘤耐药性,有望用于结肠癌治疗

Ahmed Kh. Abosalha, Paromita Islam, Jacqueline L. Boyajian, Rahul Thareja, Sabrina Schaly, Amal Kassab, Stephanie Makhlouf, Sarah Alali, Satya Prakash
{"title":"结肠靶向缓释 5-氟尿嘧啶和槲皮素聚乳酸-共聚乙醇酸 (PLGA) 组合纳米粒子显示出更强的细胞凋亡能力和最小的肿瘤耐药性,有望用于结肠癌治疗","authors":"Ahmed Kh. Abosalha, Paromita Islam, Jacqueline L. Boyajian, Rahul Thareja, Sabrina Schaly, Amal Kassab, Stephanie Makhlouf, Sarah Alali, Satya Prakash","doi":"10.1021/acsptsci.4c00462","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC) is the third most common cancer worldwide, acting as a significant public health problem. 5-Fluorouracil (5-FU) is a key chemotherapy for various types of cancer, due to its broad anticancer activity. However, the emergence of drug resistance is a considerable limitation in the clinical application of 5-FU. Quercetin (QC) is proposed as an adjuvant therapy to minimize drug resistance to chemotherapeutics and enhance their pharmacological efficacy. The oral delivery of 5-FU and QC is challenged by poor aqueous solubility of QC and poor cellular permeability of 5-FU. To solve this issue, novel polylactide-<i>co</i>-glycolide (PLGA) combinatorial nanoparticles loading 5-FU and QC were prepared to deliver them directly to the colon. These sustained-release combinatorial nanoparticles recorded a significant decrease in cancer cell proliferation, C-reactive protein (CRP) level, and Interleukin-8 (IL-8) expression by 30.08%, 40.7%, and 46.6%, respectively. The results revealed that this combination therapy may offer a new strategy for the targeted delivery of chemotherapeutics to the colon.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer\",\"authors\":\"Ahmed Kh. Abosalha, Paromita Islam, Jacqueline L. Boyajian, Rahul Thareja, Sabrina Schaly, Amal Kassab, Stephanie Makhlouf, Sarah Alali, Satya Prakash\",\"doi\":\"10.1021/acsptsci.4c00462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colorectal cancer (CRC) is the third most common cancer worldwide, acting as a significant public health problem. 5-Fluorouracil (5-FU) is a key chemotherapy for various types of cancer, due to its broad anticancer activity. However, the emergence of drug resistance is a considerable limitation in the clinical application of 5-FU. Quercetin (QC) is proposed as an adjuvant therapy to minimize drug resistance to chemotherapeutics and enhance their pharmacological efficacy. The oral delivery of 5-FU and QC is challenged by poor aqueous solubility of QC and poor cellular permeability of 5-FU. To solve this issue, novel polylactide-<i>co</i>-glycolide (PLGA) combinatorial nanoparticles loading 5-FU and QC were prepared to deliver them directly to the colon. These sustained-release combinatorial nanoparticles recorded a significant decrease in cancer cell proliferation, C-reactive protein (CRP) level, and Interleukin-8 (IL-8) expression by 30.08%, 40.7%, and 46.6%, respectively. The results revealed that this combination therapy may offer a new strategy for the targeted delivery of chemotherapeutics to the colon.\",\"PeriodicalId\":501473,\"journal\":{\"name\":\"ACS Pharmacology & Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology & Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology & Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)是全球第三大常见癌症,是一个重大的公共卫生问题。5-氟尿嘧啶(5-FU)具有广泛的抗癌活性,是治疗各种癌症的主要化疗药物。然而,耐药性的出现极大地限制了 5-FU 的临床应用。槲皮素(QC)被建议作为一种辅助疗法,以最大限度地减少化疗药物的耐药性,并提高其药效。由于 QC 的水溶性差和 5-FU 的细胞渗透性差,5-FU 和 QC 的口服给药面临挑战。为解决这一问题,研究人员制备了负载 5-FU 和 QC 的新型聚乳酸-聚乙二醇(PLGA)组合纳米颗粒,将它们直接输送到结肠。这些缓释组合纳米粒子显著降低了癌细胞增殖、C反应蛋白(CRP)水平和白细胞介素-8(IL-8)表达,降幅分别为30.08%、40.7%和46.6%。研究结果表明,这种联合疗法可为向结肠靶向输送化疗药物提供一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer

Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer
Colorectal cancer (CRC) is the third most common cancer worldwide, acting as a significant public health problem. 5-Fluorouracil (5-FU) is a key chemotherapy for various types of cancer, due to its broad anticancer activity. However, the emergence of drug resistance is a considerable limitation in the clinical application of 5-FU. Quercetin (QC) is proposed as an adjuvant therapy to minimize drug resistance to chemotherapeutics and enhance their pharmacological efficacy. The oral delivery of 5-FU and QC is challenged by poor aqueous solubility of QC and poor cellular permeability of 5-FU. To solve this issue, novel polylactide-co-glycolide (PLGA) combinatorial nanoparticles loading 5-FU and QC were prepared to deliver them directly to the colon. These sustained-release combinatorial nanoparticles recorded a significant decrease in cancer cell proliferation, C-reactive protein (CRP) level, and Interleukin-8 (IL-8) expression by 30.08%, 40.7%, and 46.6%, respectively. The results revealed that this combination therapy may offer a new strategy for the targeted delivery of chemotherapeutics to the colon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信