小奇异值可提高较低精度

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Christos Boutsikas, Petros Drineas, Ilse C. F. Ipsen
{"title":"小奇异值可提高较低精度","authors":"Christos Boutsikas, Petros Drineas, Ilse C. F. Ipsen","doi":"10.1137/23m1557209","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1518-1540, September 2024. <br/> Abstract. We perturb a real matrix [math] of full column rank, and derive lower bounds for the smallest singular values of the perturbed matrix, in terms of normwise absolute perturbations. Our bounds, which extend existing lower-order expressions, demonstrate the potential increase in the smallest singular values and represent a qualitative model for the increase in the small singular values after a matrix has been downcast to a lower arithmetic precision. Numerical experiments confirm the qualitative validity of this model and its ability to predict singular values changes in the presence of decreased arithmetic precision.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Singular Values Can Increase in Lower Precision\",\"authors\":\"Christos Boutsikas, Petros Drineas, Ilse C. F. Ipsen\",\"doi\":\"10.1137/23m1557209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1518-1540, September 2024. <br/> Abstract. We perturb a real matrix [math] of full column rank, and derive lower bounds for the smallest singular values of the perturbed matrix, in terms of normwise absolute perturbations. Our bounds, which extend existing lower-order expressions, demonstrate the potential increase in the smallest singular values and represent a qualitative model for the increase in the small singular values after a matrix has been downcast to a lower arithmetic precision. Numerical experiments confirm the qualitative validity of this model and its ability to predict singular values changes in the presence of decreased arithmetic precision.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1557209\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1557209","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷,第 3 期,第 1518-1540 页,2024 年 9 月。 摘要。我们对一个全列秩的实矩阵[math]进行扰动,并根据规范绝对扰动推导出扰动矩阵最小奇异值的下限。我们的下界扩展了现有的低阶表达式,证明了最小奇异值的潜在增长,并代表了矩阵降维到较低算术精度后小奇异值增长的定性模型。数值实验证实了这一模型的定性有效性及其预测算术精度降低时奇异值变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Singular Values Can Increase in Lower Precision
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1518-1540, September 2024.
Abstract. We perturb a real matrix [math] of full column rank, and derive lower bounds for the smallest singular values of the perturbed matrix, in terms of normwise absolute perturbations. Our bounds, which extend existing lower-order expressions, demonstrate the potential increase in the smallest singular values and represent a qualitative model for the increase in the small singular values after a matrix has been downcast to a lower arithmetic precision. Numerical experiments confirm the qualitative validity of this model and its ability to predict singular values changes in the presence of decreased arithmetic precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信