{"title":"正交矩阵的增长因子以及部分和完全透视高斯消元的局部行为","authors":"John Peca-Medlin","doi":"10.1137/23m1597733","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1599-1620, September 2024. <br/> Abstract. Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided recently by Huang and Tikhomirov’s average-case analysis of GEPP, which showed GEPP growth factors for Gaussian matrices stay at most polynomial with very high probability. GE with complete pivoting (GECP) has also seen a lot of recent interest, with improvements to both lower and upper bounds on worst-case GECP growth provided by Bisain, Edelman, and Urschel in 2023. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. Moreover, as a means to better address the question of why large growth is rarely encountered, we further study matrices with a large difference in growth between using GEPP and GECP, and we explore how the smaller growth strategy dominates behavior in a small neighborhood of the initial matrix.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting\",\"authors\":\"John Peca-Medlin\",\"doi\":\"10.1137/23m1597733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1599-1620, September 2024. <br/> Abstract. Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided recently by Huang and Tikhomirov’s average-case analysis of GEPP, which showed GEPP growth factors for Gaussian matrices stay at most polynomial with very high probability. GE with complete pivoting (GECP) has also seen a lot of recent interest, with improvements to both lower and upper bounds on worst-case GECP growth provided by Bisain, Edelman, and Urschel in 2023. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. Moreover, as a means to better address the question of why large growth is rarely encountered, we further study matrices with a large difference in growth between using GEPP and GECP, and we explore how the smaller growth strategy dominates behavior in a small neighborhood of the initial matrix.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1597733\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1597733","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1599-1620, September 2024. Abstract. Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided recently by Huang and Tikhomirov’s average-case analysis of GEPP, which showed GEPP growth factors for Gaussian matrices stay at most polynomial with very high probability. GE with complete pivoting (GECP) has also seen a lot of recent interest, with improvements to both lower and upper bounds on worst-case GECP growth provided by Bisain, Edelman, and Urschel in 2023. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. Moreover, as a means to better address the question of why large growth is rarely encountered, we further study matrices with a large difference in growth between using GEPP and GECP, and we explore how the smaller growth strategy dominates behavior in a small neighborhood of the initial matrix.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.