Tidal MerzA:通过强化学习将情感建模与自主代码生成相结合

Elizabeth Wilson, György Fazekas, Geraint Wiggins
{"title":"Tidal MerzA:通过强化学习将情感建模与自主代码生成相结合","authors":"Elizabeth Wilson, György Fazekas, Geraint Wiggins","doi":"arxiv-2409.07918","DOIUrl":null,"url":null,"abstract":"This paper presents Tidal-MerzA, a novel system designed for collaborative\nperformances between humans and a machine agent in the context of live coding,\nspecifically focusing on the generation of musical patterns. Tidal-MerzA fuses\ntwo foundational models: ALCAA (Affective Live Coding Autonomous Agent) and\nTidal Fuzz, a computational framework. By integrating affective modelling with\ncomputational generation, this system leverages reinforcement learning\ntechniques to dynamically adapt music composition parameters within the\nTidalCycles framework, ensuring both affective qualities to the patterns and\nsyntactical correctness. The development of Tidal-MerzA introduces two distinct\nagents: one focusing on the generation of mini-notation strings for musical\nexpression, and another on the alignment of music with targeted affective\nstates through reinforcement learning. This approach enhances the adaptability\nand creative potential of live coding practices and allows exploration of\nhuman-machine creative interactions. Tidal-MerzA advances the field of\ncomputational music generation, presenting a novel methodology for\nincorporating artificial intelligence into artistic practices.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tidal MerzA: Combining affective modelling and autonomous code generation through Reinforcement Learning\",\"authors\":\"Elizabeth Wilson, György Fazekas, Geraint Wiggins\",\"doi\":\"arxiv-2409.07918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Tidal-MerzA, a novel system designed for collaborative\\nperformances between humans and a machine agent in the context of live coding,\\nspecifically focusing on the generation of musical patterns. Tidal-MerzA fuses\\ntwo foundational models: ALCAA (Affective Live Coding Autonomous Agent) and\\nTidal Fuzz, a computational framework. By integrating affective modelling with\\ncomputational generation, this system leverages reinforcement learning\\ntechniques to dynamically adapt music composition parameters within the\\nTidalCycles framework, ensuring both affective qualities to the patterns and\\nsyntactical correctness. The development of Tidal-MerzA introduces two distinct\\nagents: one focusing on the generation of mini-notation strings for musical\\nexpression, and another on the alignment of music with targeted affective\\nstates through reinforcement learning. This approach enhances the adaptability\\nand creative potential of live coding practices and allows exploration of\\nhuman-machine creative interactions. Tidal-MerzA advances the field of\\ncomputational music generation, presenting a novel methodology for\\nincorporating artificial intelligence into artistic practices.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 Tidal-MerzA,这是一个新颖的系统,专为现场编码背景下人类与机器代理之间的协作表演而设计,尤其侧重于音乐模式的生成。Tidal-MerzA 融合了两个基础模型:ALCAA(情感现场编码自主代理)和潮汐模糊(一种计算框架)。通过将情感建模与计算生成相结合,该系统利用强化学习技术在 TidalCycles 框架内动态调整音乐创作参数,既保证了模式的情感品质,又保证了句法的正确性。Tidal-MerzA 的开发引入了两个不同的代理:一个侧重于生成用于音乐表达的迷你注释字符串,另一个侧重于通过强化学习使音乐与目标情感相一致。这种方法增强了现场编码实践的适应性和创造潜力,并允许探索人机之间的创造性互动。Tidal-MerzA 推动了计算机音乐生成领域的发展,为将人工智能融入艺术实践提供了一种新颖的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tidal MerzA: Combining affective modelling and autonomous code generation through Reinforcement Learning
This paper presents Tidal-MerzA, a novel system designed for collaborative performances between humans and a machine agent in the context of live coding, specifically focusing on the generation of musical patterns. Tidal-MerzA fuses two foundational models: ALCAA (Affective Live Coding Autonomous Agent) and Tidal Fuzz, a computational framework. By integrating affective modelling with computational generation, this system leverages reinforcement learning techniques to dynamically adapt music composition parameters within the TidalCycles framework, ensuring both affective qualities to the patterns and syntactical correctness. The development of Tidal-MerzA introduces two distinct agents: one focusing on the generation of mini-notation strings for musical expression, and another on the alignment of music with targeted affective states through reinforcement learning. This approach enhances the adaptability and creative potential of live coding practices and allows exploration of human-machine creative interactions. Tidal-MerzA advances the field of computational music generation, presenting a novel methodology for incorporating artificial intelligence into artistic practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信