零镜头歌唱语音转换:建立在基于聚类的音素表征基础上

Wangjin Zhou, Fengrun Zhang, Yiming Liu, Wenhao Guan, Yi Zhao, He Qu
{"title":"零镜头歌唱语音转换:建立在基于聚类的音素表征基础上","authors":"Wangjin Zhou, Fengrun Zhang, Yiming Liu, Wenhao Guan, Yi Zhao, He Qu","doi":"arxiv-2409.08039","DOIUrl":null,"url":null,"abstract":"This study presents an innovative Zero-Shot any-to-any Singing Voice\nConversion (SVC) method, leveraging a novel clustering-based phoneme\nrepresentation to effectively separate content, timbre, and singing style. This\napproach enables precise voice characteristic manipulation. We discovered that\ndatasets with fewer recordings per artist are more susceptible to timbre\nleakage. Extensive testing on over 10,000 hours of singing and user feedback\nrevealed our model significantly improves sound quality and timbre accuracy,\naligning with our objectives and advancing voice conversion technology.\nFurthermore, this research advances zero-shot SVC and sets the stage for future\nwork on discrete speech representation, emphasizing the preservation of rhyme.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Shot Sing Voice Conversion: built upon clustering-based phoneme representations\",\"authors\":\"Wangjin Zhou, Fengrun Zhang, Yiming Liu, Wenhao Guan, Yi Zhao, He Qu\",\"doi\":\"arxiv-2409.08039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an innovative Zero-Shot any-to-any Singing Voice\\nConversion (SVC) method, leveraging a novel clustering-based phoneme\\nrepresentation to effectively separate content, timbre, and singing style. This\\napproach enables precise voice characteristic manipulation. We discovered that\\ndatasets with fewer recordings per artist are more susceptible to timbre\\nleakage. Extensive testing on over 10,000 hours of singing and user feedback\\nrevealed our model significantly improves sound quality and timbre accuracy,\\naligning with our objectives and advancing voice conversion technology.\\nFurthermore, this research advances zero-shot SVC and sets the stage for future\\nwork on discrete speech representation, emphasizing the preservation of rhyme.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的 "零镜头"(Zero-Shot)任意对任意歌唱语音转换(SVC)方法,利用一种新颖的基于聚类的语音呈现方式,有效地将内容、音色和演唱风格分离开来。这种方法可实现精确的语音特征处理。我们发现,每个歌手录音较少的数据集更容易受到音色泄漏的影响。通过对超过 10,000 小时的演唱和用户反馈进行广泛测试,我们发现我们的模型显著提高了音质和音色的准确性,这与我们的目标一致,并推动了语音转换技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Shot Sing Voice Conversion: built upon clustering-based phoneme representations
This study presents an innovative Zero-Shot any-to-any Singing Voice Conversion (SVC) method, leveraging a novel clustering-based phoneme representation to effectively separate content, timbre, and singing style. This approach enables precise voice characteristic manipulation. We discovered that datasets with fewer recordings per artist are more susceptible to timbre leakage. Extensive testing on over 10,000 hours of singing and user feedback revealed our model significantly improves sound quality and timbre accuracy, aligning with our objectives and advancing voice conversion technology. Furthermore, this research advances zero-shot SVC and sets the stage for future work on discrete speech representation, emphasizing the preservation of rhyme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信