{"title":"作为覆盖图的 $$*$$ - 指数","authors":"Amedeo Altavilla, Samuele Mongodi","doi":"10.1007/s40315-024-00558-z","DOIUrl":null,"url":null,"abstract":"<p>We employ tools from complex analysis to construct the <span>\\(*\\)</span>-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the <span>\\(*\\)</span>-exponential; we establish sufficient conditions for the <span>\\(*\\)</span>-product of two <span>\\(*\\)</span>-exponentials to also be a <span>\\(*\\)</span>-exponential; we calculate the slice derivative of the <span>\\(*\\)</span>-exponential of a regular function.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The $$*$$ -Exponential as a Covering Map\",\"authors\":\"Amedeo Altavilla, Samuele Mongodi\",\"doi\":\"10.1007/s40315-024-00558-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We employ tools from complex analysis to construct the <span>\\\\(*\\\\)</span>-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the <span>\\\\(*\\\\)</span>-exponential; we establish sufficient conditions for the <span>\\\\(*\\\\)</span>-product of two <span>\\\\(*\\\\)</span>-exponentials to also be a <span>\\\\(*\\\\)</span>-exponential; we calculate the slice derivative of the <span>\\\\(*\\\\)</span>-exponential of a regular function.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00558-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00558-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We employ tools from complex analysis to construct the \(*\)-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the \(*\)-exponential; we establish sufficient conditions for the \(*\)-product of two \(*\)-exponentials to also be a \(*\)-exponential; we calculate the slice derivative of the \(*\)-exponential of a regular function.