增强基于 CTC 的视觉语音识别能力

Hendrik Laux, Anke Schmeink
{"title":"增强基于 CTC 的视觉语音识别能力","authors":"Hendrik Laux, Anke Schmeink","doi":"arxiv-2409.07210","DOIUrl":null,"url":null,"abstract":"This paper presents LiteVSR2, an enhanced version of our previously\nintroduced efficient approach to Visual Speech Recognition (VSR). Building upon\nour knowledge distillation framework from a pre-trained Automatic Speech\nRecognition (ASR) model, we introduce two key improvements: a stabilized video\npreprocessing technique and feature normalization in the distillation process.\nThese improvements yield substantial performance gains on the LRS2 and LRS3\nbenchmarks, positioning LiteVSR2 as the current best CTC-based VSR model\nwithout increasing the volume of training data or computational resources\nutilized. Furthermore, we explore the scalability of our approach by examining\nperformance metrics across varying model complexities and training data\nvolumes. LiteVSR2 maintains the efficiency of its predecessor while\nsignificantly enhancing accuracy, thereby demonstrating the potential for\nresource-efficient advancements in VSR technology.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing CTC-Based Visual Speech Recognition\",\"authors\":\"Hendrik Laux, Anke Schmeink\",\"doi\":\"arxiv-2409.07210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents LiteVSR2, an enhanced version of our previously\\nintroduced efficient approach to Visual Speech Recognition (VSR). Building upon\\nour knowledge distillation framework from a pre-trained Automatic Speech\\nRecognition (ASR) model, we introduce two key improvements: a stabilized video\\npreprocessing technique and feature normalization in the distillation process.\\nThese improvements yield substantial performance gains on the LRS2 and LRS3\\nbenchmarks, positioning LiteVSR2 as the current best CTC-based VSR model\\nwithout increasing the volume of training data or computational resources\\nutilized. Furthermore, we explore the scalability of our approach by examining\\nperformance metrics across varying model complexities and training data\\nvolumes. LiteVSR2 maintains the efficiency of its predecessor while\\nsignificantly enhancing accuracy, thereby demonstrating the potential for\\nresource-efficient advancements in VSR technology.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 LiteVSR2,它是我们之前推出的视觉语音识别(VSR)高效方法的增强版。这些改进使 LiteVSR2 在 LRS2 和 LRS3 基准测试中的性能大幅提升,在不增加训练数据量或计算资源的情况下,成为目前基于 CTC 的最佳 VSR 模型。此外,我们还通过检查不同模型复杂度和训练数据量下的性能指标,探索了我们方法的可扩展性。LiteVSR2 保持了其前代产品的效率,同时显著提高了准确性,从而证明了 VSR 技术在资源效率方面的发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing CTC-Based Visual Speech Recognition
This paper presents LiteVSR2, an enhanced version of our previously introduced efficient approach to Visual Speech Recognition (VSR). Building upon our knowledge distillation framework from a pre-trained Automatic Speech Recognition (ASR) model, we introduce two key improvements: a stabilized video preprocessing technique and feature normalization in the distillation process. These improvements yield substantial performance gains on the LRS2 and LRS3 benchmarks, positioning LiteVSR2 as the current best CTC-based VSR model without increasing the volume of training data or computational resources utilized. Furthermore, we explore the scalability of our approach by examining performance metrics across varying model complexities and training data volumes. LiteVSR2 maintains the efficiency of its predecessor while significantly enhancing accuracy, thereby demonstrating the potential for resource-efficient advancements in VSR technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信