论 $$\varphi $$ -Uniform 域的均匀性指数

IF 0.6 4区 数学 Q3 MATHEMATICS
Yahui Sheng, Fan Wen, Kai Zhan
{"title":"论 $$\\varphi $$ -Uniform 域的均匀性指数","authors":"Yahui Sheng, Fan Wen, Kai Zhan","doi":"10.1007/s40315-024-00561-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G\\subsetneq {\\mathbb {R}}^n\\)</span> be a domain, where <span>\\(n\\ge 2\\)</span>. Let <span>\\(k_G\\)</span> and <span>\\(j_G\\)</span> be the quasihyperbolic metric and the distance ratio metric on <i>G</i>, respectively. In the present paper, we prove that the identity map of <span>\\((G,k_G)\\)</span> onto <span>\\((G,j_G)\\)</span> is quasisymmetric if and only if it is bilipschitz. To classify domains of <span>\\({\\mathbb {R}}^n\\)</span> into various types according to the behaviors of their quasihyperbolic metrics, we define a uniformity exponent for every proper subdomain of <span>\\({\\mathbb {R}}^n\\)</span> and prove that this exponent may assume any value in <span>\\(\\{0\\}\\cup [1,\\infty ]\\)</span>. Moreover, we study the properties of domains of uniformity exponent 1 and show by an example that such a domain may be neither quasiconvex nor accessible.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"423 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Uniformity Exponents of $$\\\\varphi $$ -Uniform Domains\",\"authors\":\"Yahui Sheng, Fan Wen, Kai Zhan\",\"doi\":\"10.1007/s40315-024-00561-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(G\\\\subsetneq {\\\\mathbb {R}}^n\\\\)</span> be a domain, where <span>\\\\(n\\\\ge 2\\\\)</span>. Let <span>\\\\(k_G\\\\)</span> and <span>\\\\(j_G\\\\)</span> be the quasihyperbolic metric and the distance ratio metric on <i>G</i>, respectively. In the present paper, we prove that the identity map of <span>\\\\((G,k_G)\\\\)</span> onto <span>\\\\((G,j_G)\\\\)</span> is quasisymmetric if and only if it is bilipschitz. To classify domains of <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> into various types according to the behaviors of their quasihyperbolic metrics, we define a uniformity exponent for every proper subdomain of <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> and prove that this exponent may assume any value in <span>\\\\(\\\\{0\\\\}\\\\cup [1,\\\\infty ]\\\\)</span>. Moreover, we study the properties of domains of uniformity exponent 1 and show by an example that such a domain may be neither quasiconvex nor accessible.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"423 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00561-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00561-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(G/subsetneq {\mathbb {R}}^n\) 是一个域,其中(n/ge 2\).让 \(k_G\) 和 \(j_G\) 分别是 G 上的准双曲度量和距离比度量。在本文中,我们将证明当且仅当 \((G,k_G)\ 到 \((G,j_G)\) 的标识映射是双双曲的时候,它是准对称的。为了根据准双曲度量的行为将 \({\mathbb {R}}^n\) 的域划分为各种类型,我们为 \({\mathbb {R}}^n\) 的每个适当子域定义了一个均匀性指数,并证明这个指数可以在 \({0\}\cup [1,\infty ]\) 中取任意值。此外,我们还研究了均匀性指数为 1 的域的性质,并通过一个例子证明了这样的域可能既不是准凸的,也不是可及的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Uniformity Exponents of $$\varphi $$ -Uniform Domains

On Uniformity Exponents of $$\varphi $$ -Uniform Domains

Let \(G\subsetneq {\mathbb {R}}^n\) be a domain, where \(n\ge 2\). Let \(k_G\) and \(j_G\) be the quasihyperbolic metric and the distance ratio metric on G, respectively. In the present paper, we prove that the identity map of \((G,k_G)\) onto \((G,j_G)\) is quasisymmetric if and only if it is bilipschitz. To classify domains of \({\mathbb {R}}^n\) into various types according to the behaviors of their quasihyperbolic metrics, we define a uniformity exponent for every proper subdomain of \({\mathbb {R}}^n\) and prove that this exponent may assume any value in \(\{0\}\cup [1,\infty ]\). Moreover, we study the properties of domains of uniformity exponent 1 and show by an example that such a domain may be neither quasiconvex nor accessible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信