{"title":"利用卡拉瑟奥多里类和施瓦兹衍生物表征凹映射","authors":"Víctor Bravo, Rodrigo Hernández, Osvaldo Venegas","doi":"10.1007/s40315-024-00557-0","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to establish new characterizations of concave functions <i>f</i> defined in <span>\\({\\mathbb {D}}\\)</span> in terms of the operator <span>\\(1+zf''/f'\\)</span>, the Schwarzian derivative and the lower order. We will distinguish the cases when the omitted set is bounded or unbounded, and in the latter case, we will address the subclasses determined by the angle at infinity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Characterization of Concave Mappings Using the Carathéodory Class and Schwarzian Derivative\",\"authors\":\"Víctor Bravo, Rodrigo Hernández, Osvaldo Venegas\",\"doi\":\"10.1007/s40315-024-00557-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to establish new characterizations of concave functions <i>f</i> defined in <span>\\\\({\\\\mathbb {D}}\\\\)</span> in terms of the operator <span>\\\\(1+zf''/f'\\\\)</span>, the Schwarzian derivative and the lower order. We will distinguish the cases when the omitted set is bounded or unbounded, and in the latter case, we will address the subclasses determined by the angle at infinity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00557-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00557-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的是通过算子(1+zf''/f''\)、施瓦茨导数和低阶来建立定义在 \({\mathbb {D}}\) 中的凹函数 f 的新特征。我们将区分省略集是有界还是无界的情况,在后一种情况下,我们将讨论由无穷远处的角度决定的子类。
A Characterization of Concave Mappings Using the Carathéodory Class and Schwarzian Derivative
The purpose of this paper is to establish new characterizations of concave functions f defined in \({\mathbb {D}}\) in terms of the operator \(1+zf''/f'\), the Schwarzian derivative and the lower order. We will distinguish the cases when the omitted set is bounded or unbounded, and in the latter case, we will address the subclasses determined by the angle at infinity.