线性自回归学习的简短信息理论分析

Ingvar Ziemann
{"title":"线性自回归学习的简短信息理论分析","authors":"Ingvar Ziemann","doi":"arxiv-2409.06437","DOIUrl":null,"url":null,"abstract":"In this note, we give a short information-theoretic proof of the consistency\nof the Gaussian maximum likelihood estimator in linear auto-regressive models.\nOur proof yields nearly optimal non-asymptotic rates for parameter recovery and\nworks without any invocation of stability in the case of finite hypothesis\nclasses.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Short Information-Theoretic Analysis of Linear Auto-Regressive Learning\",\"authors\":\"Ingvar Ziemann\",\"doi\":\"arxiv-2409.06437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we give a short information-theoretic proof of the consistency\\nof the Gaussian maximum likelihood estimator in linear auto-regressive models.\\nOur proof yields nearly optimal non-asymptotic rates for parameter recovery and\\nworks without any invocation of stability in the case of finite hypothesis\\nclasses.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本说明中,我们给出了线性自回归模型中高斯极大似然估计器一致性的简短信息论证明。我们的证明为参数恢复提供了近乎最优的非渐近率,并且在有限假设类的情况下无需引用任何稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Short Information-Theoretic Analysis of Linear Auto-Regressive Learning
In this note, we give a short information-theoretic proof of the consistency of the Gaussian maximum likelihood estimator in linear auto-regressive models. Our proof yields nearly optimal non-asymptotic rates for parameter recovery and works without any invocation of stability in the case of finite hypothesis classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信