用于紧密耦合激光雷达-惯性测距的等变滤波器

Anbo Tao, Yarong Luo, Chunxi Xia, Chi Guo, Xingxing Li
{"title":"用于紧密耦合激光雷达-惯性测距的等变滤波器","authors":"Anbo Tao, Yarong Luo, Chunxi Xia, Chi Guo, Xingxing Li","doi":"arxiv-2409.06948","DOIUrl":null,"url":null,"abstract":"Pose estimation is a crucial problem in simultaneous localization and mapping\n(SLAM). However, developing a robust and consistent state estimator remains a\nsignificant challenge, as the traditional extended Kalman filter (EKF)\nstruggles to handle the model nonlinearity, especially for inertial measurement\nunit (IMU) and light detection and ranging (LiDAR). To provide a consistent and\nefficient solution of pose estimation, we propose Eq-LIO, a robust state\nestimator for tightly coupled LIO systems based on an equivariant filter (EqF).\nCompared with the invariant Kalman filter based on the $\\SE_2(3)$ group\nstructure, the EqF uses the symmetry of the semi-direct product group to couple\nthe system state including IMU bias, navigation state and LiDAR extrinsic\ncalibration state, thereby suppressing linearization error and improving the\nbehavior of the estimator in the event of unexpected state changes. The\nproposed Eq-LIO owns natural consistency and higher robustness, which is\ntheoretically proven with mathematical derivation and experimentally verified\nthrough a series of tests on both public and private datasets.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant Filter for Tightly Coupled LiDAR-Inertial Odometry\",\"authors\":\"Anbo Tao, Yarong Luo, Chunxi Xia, Chi Guo, Xingxing Li\",\"doi\":\"arxiv-2409.06948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pose estimation is a crucial problem in simultaneous localization and mapping\\n(SLAM). However, developing a robust and consistent state estimator remains a\\nsignificant challenge, as the traditional extended Kalman filter (EKF)\\nstruggles to handle the model nonlinearity, especially for inertial measurement\\nunit (IMU) and light detection and ranging (LiDAR). To provide a consistent and\\nefficient solution of pose estimation, we propose Eq-LIO, a robust state\\nestimator for tightly coupled LIO systems based on an equivariant filter (EqF).\\nCompared with the invariant Kalman filter based on the $\\\\SE_2(3)$ group\\nstructure, the EqF uses the symmetry of the semi-direct product group to couple\\nthe system state including IMU bias, navigation state and LiDAR extrinsic\\ncalibration state, thereby suppressing linearization error and improving the\\nbehavior of the estimator in the event of unexpected state changes. The\\nproposed Eq-LIO owns natural consistency and higher robustness, which is\\ntheoretically proven with mathematical derivation and experimentally verified\\nthrough a series of tests on both public and private datasets.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

姿态估计是同步定位与映射(SLAM)中的一个关键问题。然而,由于传统的扩展卡尔曼滤波器(EKF)难以处理模型的非线性问题,特别是对于惯性测量单元(IMU)和光探测与测距(LiDAR)而言,开发稳健且一致的状态估计器仍是一项重大挑战。为了提供一致、高效的姿态估计解决方案,我们提出了基于等变滤波器(EqF)的鲁棒性状态估计器 Eq-LIO,用于紧密耦合的 LIO 系统。与基于$\SE_2(3)$组结构的不变卡尔曼滤波器相比,EqF利用半直积组的对称性将系统状态(包括IMU偏置、导航状态和LiDAR外校准状态)耦合在一起,从而抑制线性化误差并改善估计器在意外状态变化时的行为。提出的 Eq-LIO 具有天然的一致性和更高的鲁棒性,这在理论上通过数学推导得到了证明,并通过在公共和私人数据集上的一系列测试得到了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant Filter for Tightly Coupled LiDAR-Inertial Odometry
Pose estimation is a crucial problem in simultaneous localization and mapping (SLAM). However, developing a robust and consistent state estimator remains a significant challenge, as the traditional extended Kalman filter (EKF) struggles to handle the model nonlinearity, especially for inertial measurement unit (IMU) and light detection and ranging (LiDAR). To provide a consistent and efficient solution of pose estimation, we propose Eq-LIO, a robust state estimator for tightly coupled LIO systems based on an equivariant filter (EqF). Compared with the invariant Kalman filter based on the $\SE_2(3)$ group structure, the EqF uses the symmetry of the semi-direct product group to couple the system state including IMU bias, navigation state and LiDAR extrinsic calibration state, thereby suppressing linearization error and improving the behavior of the estimator in the event of unexpected state changes. The proposed Eq-LIO owns natural consistency and higher robustness, which is theoretically proven with mathematical derivation and experimentally verified through a series of tests on both public and private datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信