有限离散信号的正交模式分解

Ning Li, Lezhi Li
{"title":"有限离散信号的正交模式分解","authors":"Ning Li, Lezhi Li","doi":"arxiv-2409.07242","DOIUrl":null,"url":null,"abstract":"In this paper, an orthogonal mode decomposition method is proposed to\ndecompose ffnite length real signals on both the real and imaginary axes of the\ncomplex plane. The interpolation function space of ffnite length discrete\nsignal is constructed, and the relationship between the dimensionality of the\ninterpolation function space and its subspaces and the band width of the\ninterpolation function is analyzed. It is proved that the intrinsic mode is\nactually the narrow band signal whose intrinsic instantaneous frequency is\nalways positive (or always negative). Thus, the eigenmode decomposition problem\nis transformed into the orthogonal projection problem of interpolation function\nspace to its low frequency subspace or narrow band subspace. Different from the\nexisting mode decomposition methods, the orthogonal modal decomposition is a\nlocal time-frequency domain algorithm. Each operation extracts a speciffc mode.\nThe global decomposition results obtained under the precise deffnition of\neigenmodes have uniqueness and orthogonality. The computational complexity of\nthe orthogonal mode decomposition method is also much smaller than that of the\nexisting mode decomposition methods.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal Mode Decomposition for Finite Discrete Signals\",\"authors\":\"Ning Li, Lezhi Li\",\"doi\":\"arxiv-2409.07242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an orthogonal mode decomposition method is proposed to\\ndecompose ffnite length real signals on both the real and imaginary axes of the\\ncomplex plane. The interpolation function space of ffnite length discrete\\nsignal is constructed, and the relationship between the dimensionality of the\\ninterpolation function space and its subspaces and the band width of the\\ninterpolation function is analyzed. It is proved that the intrinsic mode is\\nactually the narrow band signal whose intrinsic instantaneous frequency is\\nalways positive (or always negative). Thus, the eigenmode decomposition problem\\nis transformed into the orthogonal projection problem of interpolation function\\nspace to its low frequency subspace or narrow band subspace. Different from the\\nexisting mode decomposition methods, the orthogonal modal decomposition is a\\nlocal time-frequency domain algorithm. Each operation extracts a speciffc mode.\\nThe global decomposition results obtained under the precise deffnition of\\neigenmodes have uniqueness and orthogonality. The computational complexity of\\nthe orthogonal mode decomposition method is also much smaller than that of the\\nexisting mode decomposition methods.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种正交模态分解方法,用于在复数平面的实轴和虚轴上分解 ffnite 长度的实信号。构建了非整数长度离散信号的插值函数空间,分析了插值函数空间及其子空间的维数与插值函数带宽之间的关系。结果证明,本征模式实际上就是本征瞬时频率始终为正(或始终为负)的窄带信号。因此,特征模态分解问题转化为插值函数空间向其低频子空间或窄带子空间的正交投影问题。与现有的模态分解方法不同,正交模态分解是一种局部时频域算法。在精确的特征模态定义下得到的全局分解结果具有唯一性和正交性。正交模式分解方法的计算复杂度也远远小于现有的模式分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal Mode Decomposition for Finite Discrete Signals
In this paper, an orthogonal mode decomposition method is proposed to decompose ffnite length real signals on both the real and imaginary axes of the complex plane. The interpolation function space of ffnite length discrete signal is constructed, and the relationship between the dimensionality of the interpolation function space and its subspaces and the band width of the interpolation function is analyzed. It is proved that the intrinsic mode is actually the narrow band signal whose intrinsic instantaneous frequency is always positive (or always negative). Thus, the eigenmode decomposition problem is transformed into the orthogonal projection problem of interpolation function space to its low frequency subspace or narrow band subspace. Different from the existing mode decomposition methods, the orthogonal modal decomposition is a local time-frequency domain algorithm. Each operation extracts a speciffc mode. The global decomposition results obtained under the precise deffnition of eigenmodes have uniqueness and orthogonality. The computational complexity of the orthogonal mode decomposition method is also much smaller than that of the existing mode decomposition methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信