具有不连续源项的奇异扰动反应扩散型积分微分方程系统的计算方法

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2024-08-24 DOI:10.1007/s10092-024-00609-w
Ajay Singh Rathore, Vembu Shanthi
{"title":"具有不连续源项的奇异扰动反应扩散型积分微分方程系统的计算方法","authors":"Ajay Singh Rathore, Vembu Shanthi","doi":"10.1007/s10092-024-00609-w","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a qualitative and quantitative study of a second-order Singularly Perturbed Reaction–Diffusion type System of Integro-differential equations with discontinuous source term. To obtain the numerical solution of the problem, an exponentially-fitted method that can be applied to a Shishkin mesh. This method shows that uniform convergence with respect to the perturbation parameter and necessary examples are given.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"75 2 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational method for singularly perturbed reaction–diffusion type system of integro-differential equations with discontinuous source term\",\"authors\":\"Ajay Singh Rathore, Vembu Shanthi\",\"doi\":\"10.1007/s10092-024-00609-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides a qualitative and quantitative study of a second-order Singularly Perturbed Reaction–Diffusion type System of Integro-differential equations with discontinuous source term. To obtain the numerical solution of the problem, an exponentially-fitted method that can be applied to a Shishkin mesh. This method shows that uniform convergence with respect to the perturbation parameter and necessary examples are given.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":\"75 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00609-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00609-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对带有不连续源项的二阶奇异扰动反应-扩散型积分微分方程系统进行了定性和定量研究。为了获得问题的数值解,采用了一种可应用于 Shishkin 网格的指数拟合方法。该方法显示了关于扰动参数的均匀收敛性,并给出了必要的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A computational method for singularly perturbed reaction–diffusion type system of integro-differential equations with discontinuous source term

A computational method for singularly perturbed reaction–diffusion type system of integro-differential equations with discontinuous source term

This paper provides a qualitative and quantitative study of a second-order Singularly Perturbed Reaction–Diffusion type System of Integro-differential equations with discontinuous source term. To obtain the numerical solution of the problem, an exponentially-fitted method that can be applied to a Shishkin mesh. This method shows that uniform convergence with respect to the perturbation parameter and necessary examples are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信