扰动-稳健后备控制屏障功能:不确定动态下的安全性

David E. J. van Wijk, Samuel Coogan, Tamas G. Molnar, Manoranjan Majji, Kerianne L. Hobbs
{"title":"扰动-稳健后备控制屏障功能:不确定动态下的安全性","authors":"David E. J. van Wijk, Samuel Coogan, Tamas G. Molnar, Manoranjan Majji, Kerianne L. Hobbs","doi":"arxiv-2409.07700","DOIUrl":null,"url":null,"abstract":"Obtaining a controlled invariant set is crucial for safety-critical control\nwith control barrier functions (CBFs) but is non-trivial for complex nonlinear\nsystems and constraints. Backup control barrier functions allow such sets to be\nconstructed online in a computationally tractable manner by examining the\nevolution (or flow) of the system under a known backup control law. However,\nfor systems with unmodeled disturbances, this flow cannot be directly computed,\nmaking the current methods inadequate for assuring safety in these scenarios.\nTo address this gap, we leverage bounds on the nominal and disturbed flow to\ncompute a forward invariant set online by ensuring safety of an expanding norm\nball tube centered around the nominal system evolution. We prove that this set\nresults in robust control constraints which guarantee safety of the disturbed\nsystem via our Disturbance-Robust Backup Control Barrier Function (DR-BCBF)\nsolution. Additionally, the efficacy of the proposed framework is demonstrated\nin simulation, applied to a double integrator problem and a rigid body\nspacecraft rotation problem with rate constraints.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"75 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disturbance-Robust Backup Control Barrier Functions: Safety Under Uncertain Dynamics\",\"authors\":\"David E. J. van Wijk, Samuel Coogan, Tamas G. Molnar, Manoranjan Majji, Kerianne L. Hobbs\",\"doi\":\"arxiv-2409.07700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining a controlled invariant set is crucial for safety-critical control\\nwith control barrier functions (CBFs) but is non-trivial for complex nonlinear\\nsystems and constraints. Backup control barrier functions allow such sets to be\\nconstructed online in a computationally tractable manner by examining the\\nevolution (or flow) of the system under a known backup control law. However,\\nfor systems with unmodeled disturbances, this flow cannot be directly computed,\\nmaking the current methods inadequate for assuring safety in these scenarios.\\nTo address this gap, we leverage bounds on the nominal and disturbed flow to\\ncompute a forward invariant set online by ensuring safety of an expanding norm\\nball tube centered around the nominal system evolution. We prove that this set\\nresults in robust control constraints which guarantee safety of the disturbed\\nsystem via our Disturbance-Robust Backup Control Barrier Function (DR-BCBF)\\nsolution. Additionally, the efficacy of the proposed framework is demonstrated\\nin simulation, applied to a double integrator problem and a rigid body\\nspacecraft rotation problem with rate constraints.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"75 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

获得受控不变集对于利用控制障碍函数(CBF)进行安全关键控制至关重要,但对于复杂的非线性系统和约束条件来说并非易事。后备控制障壁函数允许通过检查已知后备控制法则下的系统演变(或流动),以计算简单的方式在线构建此类控制不变集。为了弥补这一缺陷,我们利用对标称流和干扰流的约束,通过确保以标称系统演化为中心的不断扩大的规范球管的安全性,在线计算前向不变集。我们通过扰动-稳健后备控制屏障函数(DR-BCBF)解决方案证明,该集合可产生稳健控制约束,从而保证受扰动系统的安全。此外,我们还在仿真中证明了所提框架的有效性,并将其应用于双积分器问题和带速率约束的刚体航天器旋转问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disturbance-Robust Backup Control Barrier Functions: Safety Under Uncertain Dynamics
Obtaining a controlled invariant set is crucial for safety-critical control with control barrier functions (CBFs) but is non-trivial for complex nonlinear systems and constraints. Backup control barrier functions allow such sets to be constructed online in a computationally tractable manner by examining the evolution (or flow) of the system under a known backup control law. However, for systems with unmodeled disturbances, this flow cannot be directly computed, making the current methods inadequate for assuring safety in these scenarios. To address this gap, we leverage bounds on the nominal and disturbed flow to compute a forward invariant set online by ensuring safety of an expanding norm ball tube centered around the nominal system evolution. We prove that this set results in robust control constraints which guarantee safety of the disturbed system via our Disturbance-Robust Backup Control Barrier Function (DR-BCBF) solution. Additionally, the efficacy of the proposed framework is demonstrated in simulation, applied to a double integrator problem and a rigid body spacecraft rotation problem with rate constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信