通过反馈调整改进在线学习回声状态网络控制系统的初始瞬态

Junyi Shen
{"title":"通过反馈调整改进在线学习回声状态网络控制系统的初始瞬态","authors":"Junyi Shen","doi":"arxiv-2409.08228","DOIUrl":null,"url":null,"abstract":"Echo state networks (ESNs) have gained popularity in online learning control\nsystems due to their easy training. However, online learning ESN controllers\noften undergo slow convergence and produce unexpected outputs during the\ninitial transient phase. Existing solutions, such as prior training or control\nmode switching, can be complex and have drawbacks. This work offers a simple\nyet effective method to address these initial transients by integrating a\nfeedback proportional-differential (P-D) controller. Simulation results show\nthat the proposed control system exhibits fast convergence and strong\nrobustness against plant dynamics and hyperparameter changes. This work is\nexpected to offer practical benefits for engineers seeking to implement online\nlearning ESN control systems.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Initial Transients of Online Learning Echo State Network Control System via Feedback Adjustment\",\"authors\":\"Junyi Shen\",\"doi\":\"arxiv-2409.08228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echo state networks (ESNs) have gained popularity in online learning control\\nsystems due to their easy training. However, online learning ESN controllers\\noften undergo slow convergence and produce unexpected outputs during the\\ninitial transient phase. Existing solutions, such as prior training or control\\nmode switching, can be complex and have drawbacks. This work offers a simple\\nyet effective method to address these initial transients by integrating a\\nfeedback proportional-differential (P-D) controller. Simulation results show\\nthat the proposed control system exhibits fast convergence and strong\\nrobustness against plant dynamics and hyperparameter changes. This work is\\nexpected to offer practical benefits for engineers seeking to implement online\\nlearning ESN control systems.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回声状态网络(ESN)由于易于训练,在在线学习控制系统中颇受欢迎。然而,在线学习 ESN 控制器往往收敛缓慢,并在初始瞬态阶段产生意外输出。现有的解决方案,如事先训练或控制模式切换,可能会很复杂,而且存在缺点。本研究提供了一种简单而有效的方法,通过集成反馈比例-微分 (P-D) 控制器来解决这些初始瞬态问题。仿真结果表明,所提出的控制系统收敛速度快,对工厂动态和超参数变化具有很强的稳健性。这项工作有望为寻求实施在线学习 ESN 控制系统的工程师带来实际好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Initial Transients of Online Learning Echo State Network Control System via Feedback Adjustment
Echo state networks (ESNs) have gained popularity in online learning control systems due to their easy training. However, online learning ESN controllers often undergo slow convergence and produce unexpected outputs during the initial transient phase. Existing solutions, such as prior training or control mode switching, can be complex and have drawbacks. This work offers a simple yet effective method to address these initial transients by integrating a feedback proportional-differential (P-D) controller. Simulation results show that the proposed control system exhibits fast convergence and strong robustness against plant dynamics and hyperparameter changes. This work is expected to offer practical benefits for engineers seeking to implement online learning ESN control systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信