西格尔域上的海森堡群作用与伯格曼空间的结构

Pub Date : 2024-08-15 DOI:10.1007/s00020-024-02776-5
Julio A. Barrera-Reyes, Raúl Quiroga-Barranco
{"title":"西格尔域上的海森堡群作用与伯格曼空间的结构","authors":"Julio A. Barrera-Reyes, Raúl Quiroga-Barranco","doi":"10.1007/s00020-024-02776-5","DOIUrl":null,"url":null,"abstract":"<p>We study the biholomorphic action of the Heisenberg group <span>\\(\\mathbb {H}_n\\)</span> on the Siegel domain <span>\\(D_{n+1}\\)</span> (<span>\\(n \\ge 1\\)</span>). Such <span>\\(\\mathbb {H}_n\\)</span>-action allows us to obtain decompositions of both <span>\\(D_{n+1}\\)</span> and the weighted Bergman spaces <span>\\(\\mathcal {A}^2_\\lambda (D_{n+1})\\)</span> (<span>\\(\\lambda &gt; -1\\)</span>). Through the use of symplectic geometry we construct a natural set of coordinates for <span>\\(D_{n+1}\\)</span> adapted to <span>\\(\\mathbb {H}_n\\)</span>. This yields a useful decomposition of the domain <span>\\(D_{n+1}\\)</span>. The latter is then used to compute a decomposition of the Bergman spaces <span>\\(\\mathcal {A}^2_\\lambda (D_{n+1})\\)</span> (<span>\\(\\lambda &gt; -1\\)</span>) as direct integrals of Fock spaces. This effectively shows the existence of an interplay between Bergman spaces and Fock spaces through the Heisenberg group <span>\\(\\mathbb {H}_n\\)</span>. As an application, we consider <span>\\(\\mathcal {T}^{(\\lambda )}(L^\\infty (D_{n+1})^{\\mathbb {H}_n})\\)</span> the <span>\\(C^*\\)</span>-algebra acting on the weighted Bergman space <span>\\(\\mathcal {A}^2_\\lambda (D_{n+1})\\)</span> (<span>\\(\\lambda &gt; -1\\)</span>) generated by Toeplitz operators whose symbols belong to <span>\\(L^\\infty (D_{n+1})^{\\mathbb {H}_n}\\)</span> (essentially bounded and <span>\\(\\mathbb {H}_n\\)</span>-invariant). We prove that <span>\\(\\mathcal {T}^{(\\lambda )}(L^\\infty (D_{n+1})^{\\mathbb {H}_n})\\)</span> is commutative and isomorphic to <span>\\(\\textrm{VSO}(\\mathbb {R}_+)\\)</span> (very slowly oscillating functions on <span>\\(\\mathbb {R}_+\\)</span>), for every <span>\\(\\lambda &gt; -1\\)</span> and <span>\\(n \\ge 1\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Heisenberg Group Action on the Siegel Domain and the Structure of Bergman Spaces\",\"authors\":\"Julio A. Barrera-Reyes, Raúl Quiroga-Barranco\",\"doi\":\"10.1007/s00020-024-02776-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the biholomorphic action of the Heisenberg group <span>\\\\(\\\\mathbb {H}_n\\\\)</span> on the Siegel domain <span>\\\\(D_{n+1}\\\\)</span> (<span>\\\\(n \\\\ge 1\\\\)</span>). Such <span>\\\\(\\\\mathbb {H}_n\\\\)</span>-action allows us to obtain decompositions of both <span>\\\\(D_{n+1}\\\\)</span> and the weighted Bergman spaces <span>\\\\(\\\\mathcal {A}^2_\\\\lambda (D_{n+1})\\\\)</span> (<span>\\\\(\\\\lambda &gt; -1\\\\)</span>). Through the use of symplectic geometry we construct a natural set of coordinates for <span>\\\\(D_{n+1}\\\\)</span> adapted to <span>\\\\(\\\\mathbb {H}_n\\\\)</span>. This yields a useful decomposition of the domain <span>\\\\(D_{n+1}\\\\)</span>. The latter is then used to compute a decomposition of the Bergman spaces <span>\\\\(\\\\mathcal {A}^2_\\\\lambda (D_{n+1})\\\\)</span> (<span>\\\\(\\\\lambda &gt; -1\\\\)</span>) as direct integrals of Fock spaces. This effectively shows the existence of an interplay between Bergman spaces and Fock spaces through the Heisenberg group <span>\\\\(\\\\mathbb {H}_n\\\\)</span>. As an application, we consider <span>\\\\(\\\\mathcal {T}^{(\\\\lambda )}(L^\\\\infty (D_{n+1})^{\\\\mathbb {H}_n})\\\\)</span> the <span>\\\\(C^*\\\\)</span>-algebra acting on the weighted Bergman space <span>\\\\(\\\\mathcal {A}^2_\\\\lambda (D_{n+1})\\\\)</span> (<span>\\\\(\\\\lambda &gt; -1\\\\)</span>) generated by Toeplitz operators whose symbols belong to <span>\\\\(L^\\\\infty (D_{n+1})^{\\\\mathbb {H}_n}\\\\)</span> (essentially bounded and <span>\\\\(\\\\mathbb {H}_n\\\\)</span>-invariant). We prove that <span>\\\\(\\\\mathcal {T}^{(\\\\lambda )}(L^\\\\infty (D_{n+1})^{\\\\mathbb {H}_n})\\\\)</span> is commutative and isomorphic to <span>\\\\(\\\\textrm{VSO}(\\\\mathbb {R}_+)\\\\)</span> (very slowly oscillating functions on <span>\\\\(\\\\mathbb {R}_+\\\\)</span>), for every <span>\\\\(\\\\lambda &gt; -1\\\\)</span> and <span>\\\\(n \\\\ge 1\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02776-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02776-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了海森堡群在西格尔域 \(D_{n+1}\) (\(n \ge 1\)) 上的双(holomorphic)作用。这样的(\mathbb {H}_n\)作用使我们可以得到(\(D_{n+1}\)和加权伯格曼空间(\(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) 的分解。通过使用交映几何学,我们为\(D_{n+1}\)构建了一套适应于\(\mathbb {H}_n\)的自然坐标。这样就得到了一个有用的域(D_{n+1}\)分解。然后用后者来计算伯格曼空间的分解 \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) 作为福克空间的直接积分。这有效地说明了通过海森堡群 \(\mathbb {H}_n\),伯格曼空间和福克空间之间存在相互作用。作为一个应用,我们考虑到 \(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{\mathbb {H}_n})\)是作用于加权伯格曼空间 \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda >. -1/))的 \(C^*\)-代数;-本质上是有界的和(\mathbb {H}_n\)不变的)。我们证明\(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{mathbb {H}_n}))是交换的,并且与\(\textrm{VSO}(\mathbb {R}_+))同构(\(\mathbb {R}_+\)上的极慢振荡函数)、for every \(\lambda >;-和 \(n ge 1\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Heisenberg Group Action on the Siegel Domain and the Structure of Bergman Spaces

We study the biholomorphic action of the Heisenberg group \(\mathbb {H}_n\) on the Siegel domain \(D_{n+1}\) (\(n \ge 1\)). Such \(\mathbb {H}_n\)-action allows us to obtain decompositions of both \(D_{n+1}\) and the weighted Bergman spaces \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)). Through the use of symplectic geometry we construct a natural set of coordinates for \(D_{n+1}\) adapted to \(\mathbb {H}_n\). This yields a useful decomposition of the domain \(D_{n+1}\). The latter is then used to compute a decomposition of the Bergman spaces \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) as direct integrals of Fock spaces. This effectively shows the existence of an interplay between Bergman spaces and Fock spaces through the Heisenberg group \(\mathbb {H}_n\). As an application, we consider \(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{\mathbb {H}_n})\) the \(C^*\)-algebra acting on the weighted Bergman space \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) generated by Toeplitz operators whose symbols belong to \(L^\infty (D_{n+1})^{\mathbb {H}_n}\) (essentially bounded and \(\mathbb {H}_n\)-invariant). We prove that \(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{\mathbb {H}_n})\) is commutative and isomorphic to \(\textrm{VSO}(\mathbb {R}_+)\) (very slowly oscillating functions on \(\mathbb {R}_+\)), for every \(\lambda > -1\) and \(n \ge 1\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信