Bharat A. Maru, Vandana J. Rao, Sanjeev R. Kane, U. K. Goutam, Chetan K. Modi
{"title":"在可见光条件下合成用于反式巴豆醛 1, 4 自由基氧化加成的 Cu2O@g-C3N4 光催化剂的绿色方案","authors":"Bharat A. Maru, Vandana J. Rao, Sanjeev R. Kane, U. K. Goutam, Chetan K. Modi","doi":"10.1002/cptc.202400137","DOIUrl":null,"url":null,"abstract":"Using visible light conditions, we have developed a green protocol to prepare copper oxide‐doped graphitic carbon nitride (Cu2O@g‐C3N4) photocatalysts with varied ratios of g‐C3N4 nanosheets to copper oxide‐dopant (0.1%, 0.5%, 0.7%, and 5% respectively) and characterized through various physicochemical techniques. These photo‐responsive catalysts were used for the 1,4 radical oxidative addition of trans crotonaldehyde into β‐hydroxybutyric acid (BA) as a major product, utilizing 30% hydrogen peroxide as an oxidant and a white LED (Light Emitting Diode) source. Under the innoculous eco‐friendly stipulations, Cu2O@g‐C3N4 (5%) exclusively promoted the aforementioned reaction leading to 99.85% trans crotonaldehyde conversion with 67.57%, 24.1%, and 9.1% selectivity for β‐hydroxybutyric acid, crotonic acid and subsequent radical synthesis, respectively.","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition\",\"authors\":\"Bharat A. Maru, Vandana J. Rao, Sanjeev R. Kane, U. K. Goutam, Chetan K. Modi\",\"doi\":\"10.1002/cptc.202400137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using visible light conditions, we have developed a green protocol to prepare copper oxide‐doped graphitic carbon nitride (Cu2O@g‐C3N4) photocatalysts with varied ratios of g‐C3N4 nanosheets to copper oxide‐dopant (0.1%, 0.5%, 0.7%, and 5% respectively) and characterized through various physicochemical techniques. These photo‐responsive catalysts were used for the 1,4 radical oxidative addition of trans crotonaldehyde into β‐hydroxybutyric acid (BA) as a major product, utilizing 30% hydrogen peroxide as an oxidant and a white LED (Light Emitting Diode) source. Under the innoculous eco‐friendly stipulations, Cu2O@g‐C3N4 (5%) exclusively promoted the aforementioned reaction leading to 99.85% trans crotonaldehyde conversion with 67.57%, 24.1%, and 9.1% selectivity for β‐hydroxybutyric acid, crotonic acid and subsequent radical synthesis, respectively.\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cptc.202400137\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cptc.202400137","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition
Using visible light conditions, we have developed a green protocol to prepare copper oxide‐doped graphitic carbon nitride (Cu2O@g‐C3N4) photocatalysts with varied ratios of g‐C3N4 nanosheets to copper oxide‐dopant (0.1%, 0.5%, 0.7%, and 5% respectively) and characterized through various physicochemical techniques. These photo‐responsive catalysts were used for the 1,4 radical oxidative addition of trans crotonaldehyde into β‐hydroxybutyric acid (BA) as a major product, utilizing 30% hydrogen peroxide as an oxidant and a white LED (Light Emitting Diode) source. Under the innoculous eco‐friendly stipulations, Cu2O@g‐C3N4 (5%) exclusively promoted the aforementioned reaction leading to 99.85% trans crotonaldehyde conversion with 67.57%, 24.1%, and 9.1% selectivity for β‐hydroxybutyric acid, crotonic acid and subsequent radical synthesis, respectively.