与可数到一映射的转移算子相关的$$C^*$$-代数

Pub Date : 2024-08-23 DOI:10.1007/s00020-024-02774-7
Krzysztof Bardadyn, Bartosz K. Kwaśniewski, Andrei V. Lebedev
{"title":"与可数到一映射的转移算子相关的$$C^*$$-代数","authors":"Krzysztof Bardadyn, Bartosz K. Kwaśniewski, Andrei V. Lebedev","doi":"10.1007/s00020-024-02774-7","DOIUrl":null,"url":null,"abstract":"<p>Our initial data is a transfer operator <i>L</i> for a continuous, countable-to-one map <span>\\(\\varphi :\\Delta \\rightarrow X\\)</span> defined on an open subset of a locally compact Hausdorff space <i>X</i>. Then <i>L</i> may be identified with a ‘potential’, i.e. a map <span>\\(\\varrho :\\Delta \\rightarrow X\\)</span> that need not be continuous unless <span>\\(\\varphi \\)</span> is a local homeomorphism. We define the crossed product <span>\\(C_0(X)\\rtimes L\\)</span> as a universal <span>\\(C^*\\)</span>-algebra with explicit generators and relations, and give an explicit faithful representation of <span>\\(C_0(X)\\rtimes L\\)</span> under which it is generated by weighted composition operators. We explain its relationship with Exel–Royer’s crossed products, quiver <span>\\(C^*\\)</span>-algebras of Muhly and Tomforde, <span>\\(C^*\\)</span>-algebras associated to complex or self-similar dynamics by Kajiwara and Watatani, and groupoid <span>\\(C^*\\)</span>-algebras associated to Deaconu–Renault groupoids. We describe spectra of core subalgebras of <span>\\(C_0(X)\\rtimes L\\)</span>, prove uniqueness theorems for <span>\\(C_0(X)\\rtimes L\\)</span> and characterize simplicity of <span>\\(C_0(X)\\rtimes L\\)</span>. We give efficient criteria for <span>\\(C_0(X)\\rtimes L\\)</span> to be purely infinite simple and in particular a Kirchberg algebra.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$C^*$$ -Algebras Associated to Transfer Operators for Countable-to-One Maps\",\"authors\":\"Krzysztof Bardadyn, Bartosz K. Kwaśniewski, Andrei V. Lebedev\",\"doi\":\"10.1007/s00020-024-02774-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our initial data is a transfer operator <i>L</i> for a continuous, countable-to-one map <span>\\\\(\\\\varphi :\\\\Delta \\\\rightarrow X\\\\)</span> defined on an open subset of a locally compact Hausdorff space <i>X</i>. Then <i>L</i> may be identified with a ‘potential’, i.e. a map <span>\\\\(\\\\varrho :\\\\Delta \\\\rightarrow X\\\\)</span> that need not be continuous unless <span>\\\\(\\\\varphi \\\\)</span> is a local homeomorphism. We define the crossed product <span>\\\\(C_0(X)\\\\rtimes L\\\\)</span> as a universal <span>\\\\(C^*\\\\)</span>-algebra with explicit generators and relations, and give an explicit faithful representation of <span>\\\\(C_0(X)\\\\rtimes L\\\\)</span> under which it is generated by weighted composition operators. We explain its relationship with Exel–Royer’s crossed products, quiver <span>\\\\(C^*\\\\)</span>-algebras of Muhly and Tomforde, <span>\\\\(C^*\\\\)</span>-algebras associated to complex or self-similar dynamics by Kajiwara and Watatani, and groupoid <span>\\\\(C^*\\\\)</span>-algebras associated to Deaconu–Renault groupoids. We describe spectra of core subalgebras of <span>\\\\(C_0(X)\\\\rtimes L\\\\)</span>, prove uniqueness theorems for <span>\\\\(C_0(X)\\\\rtimes L\\\\)</span> and characterize simplicity of <span>\\\\(C_0(X)\\\\rtimes L\\\\)</span>. We give efficient criteria for <span>\\\\(C_0(X)\\\\rtimes L\\\\)</span> to be purely infinite simple and in particular a Kirchberg algebra.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02774-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02774-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的初始数据是连续的、可数到一的映射 \(\varphi :\Delta \rightarrow X\) 的转移算子 L,定义在局部紧凑的 Hausdorff 空间 X 的一个开放子集上。然后 L 可以与 "势 "相识别,即映射 \(\varrho :\Delta \rightarrow X\) 不需要是连续的,除非 \(\varphi \) 是局部同构。我们把交叉积 (C_0(X)\rtimes L\) 定义为具有明确生成器和关系的通用 (C^*\)代数,并给出了 \(C_0(X)\rtimes L\) 的明确忠实表示,在此表示下,它是由加权组成算子生成的。我们解释了它与 Exel-Royer 的交叉积、Muhly 和 Tomforde 的 quiver (C^*\)-代数、Kajiwara 和 Watatani 的与复杂或自相似动力学相关的 (C^*\)-代数,以及与 Deaconu-Renault 基元相关的基元 (C^*\)-代数之间的关系。我们描述了\(C_0(X)\rtimes L\) 核心子代数的谱,证明了\(C_0(X)\rtimes L\) 的唯一性定理,并描述了\(C_0(X)\rtimes L\) 的简单性。我们给出了\(C_0(X)\rtimes L\) 是纯无限简单的有效标准,尤其是一个基希贝格代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
$$C^*$$ -Algebras Associated to Transfer Operators for Countable-to-One Maps

Our initial data is a transfer operator L for a continuous, countable-to-one map \(\varphi :\Delta \rightarrow X\) defined on an open subset of a locally compact Hausdorff space X. Then L may be identified with a ‘potential’, i.e. a map \(\varrho :\Delta \rightarrow X\) that need not be continuous unless \(\varphi \) is a local homeomorphism. We define the crossed product \(C_0(X)\rtimes L\) as a universal \(C^*\)-algebra with explicit generators and relations, and give an explicit faithful representation of \(C_0(X)\rtimes L\) under which it is generated by weighted composition operators. We explain its relationship with Exel–Royer’s crossed products, quiver \(C^*\)-algebras of Muhly and Tomforde, \(C^*\)-algebras associated to complex or self-similar dynamics by Kajiwara and Watatani, and groupoid \(C^*\)-algebras associated to Deaconu–Renault groupoids. We describe spectra of core subalgebras of \(C_0(X)\rtimes L\), prove uniqueness theorems for \(C_0(X)\rtimes L\) and characterize simplicity of \(C_0(X)\rtimes L\). We give efficient criteria for \(C_0(X)\rtimes L\) to be purely infinite simple and in particular a Kirchberg algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信