$$*$$ 上的正半有限映射--半圆体和线性化

Pub Date : 2024-09-11 DOI:10.1007/s00020-024-02777-4
Aurelian Gheondea, Bogdan Udrea
{"title":"$$*$$ 上的正半有限映射--半圆体和线性化","authors":"Aurelian Gheondea, Bogdan Udrea","doi":"10.1007/s00020-024-02777-4","DOIUrl":null,"url":null,"abstract":"<p>Motivated by current investigations in dilation theory, in both operator theory and operator algebras, and the theory of groupoids, we obtain a generalisation of the Sz-Nagy’s Dilation Theorem for operator valued positive semidefinite maps on <span>\\(*\\)</span>-semigroupoids with unit, with varying degrees of aggregation, firstly by <span>\\(*\\)</span>-representations with unbounded operators and then we characterise the existence of the corresponding <span>\\(*\\)</span>-representations by bounded operators. By linearisation of these constructions, we obtain similar results for operator valued positive semidefinite maps on <span>\\(*\\)</span>-algebroids with unit and then, for the special case of <span>\\(B^*\\)</span>-algebroids with unit, we obtain a generalisation of the Stinespring’s Dilation Theorem. As an application of the generalisation of the Stinespring’s Dilation Theorem, we show that some natural questions on <span>\\(C^*\\)</span>-algebroids are equivalent.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive Semidefinite Maps on $$*$$ -Semigroupoids and Linearisations\",\"authors\":\"Aurelian Gheondea, Bogdan Udrea\",\"doi\":\"10.1007/s00020-024-02777-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by current investigations in dilation theory, in both operator theory and operator algebras, and the theory of groupoids, we obtain a generalisation of the Sz-Nagy’s Dilation Theorem for operator valued positive semidefinite maps on <span>\\\\(*\\\\)</span>-semigroupoids with unit, with varying degrees of aggregation, firstly by <span>\\\\(*\\\\)</span>-representations with unbounded operators and then we characterise the existence of the corresponding <span>\\\\(*\\\\)</span>-representations by bounded operators. By linearisation of these constructions, we obtain similar results for operator valued positive semidefinite maps on <span>\\\\(*\\\\)</span>-algebroids with unit and then, for the special case of <span>\\\\(B^*\\\\)</span>-algebroids with unit, we obtain a generalisation of the Stinespring’s Dilation Theorem. As an application of the generalisation of the Stinespring’s Dilation Theorem, we show that some natural questions on <span>\\\\(C^*\\\\)</span>-algebroids are equivalent.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02777-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02777-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受当前在扩张理论、算子理论和算子代数以及群集理论方面的研究的启发,我们首先通过无界算子的\(*\)表示,然后通过有界算子描述了相应的\(*\)表示的存在性,得到了Sz-Nagy扩张定理对于有单位的算子值正半定映射的广义化。通过这些构造的线性化,我们得到了关于有单元的(*\)形上的算子值正半定映射的类似结果,然后,对于有单元的(B^*\)形的特殊情况,我们得到了斯蒂内斯普林膨胀定理的广义化。作为 Stinespring's Dilation Theorem 广义的一个应用,我们证明了关于 \(C^*\)-algebroids 的一些自然问题是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Positive Semidefinite Maps on $$*$$ -Semigroupoids and Linearisations

Motivated by current investigations in dilation theory, in both operator theory and operator algebras, and the theory of groupoids, we obtain a generalisation of the Sz-Nagy’s Dilation Theorem for operator valued positive semidefinite maps on \(*\)-semigroupoids with unit, with varying degrees of aggregation, firstly by \(*\)-representations with unbounded operators and then we characterise the existence of the corresponding \(*\)-representations by bounded operators. By linearisation of these constructions, we obtain similar results for operator valued positive semidefinite maps on \(*\)-algebroids with unit and then, for the special case of \(B^*\)-algebroids with unit, we obtain a generalisation of the Stinespring’s Dilation Theorem. As an application of the generalisation of the Stinespring’s Dilation Theorem, we show that some natural questions on \(C^*\)-algebroids are equivalent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信