用于自动心肌注射的 SCARA 机器人的自主迭代运动学习 (AI-MOLE)

Michael Meindl, Raphael Mönkemöller, Thomas Seel
{"title":"用于自动心肌注射的 SCARA 机器人的自主迭代运动学习 (AI-MOLE)","authors":"Michael Meindl, Raphael Mönkemöller, Thomas Seel","doi":"arxiv-2409.06361","DOIUrl":null,"url":null,"abstract":"Stem cell therapy is a promising approach to treat heart insufficiency and\nbenefits from automated myocardial injection which requires highly precise\nmotion of a robotic manipulator that is equipped with a syringe. This work\ninvestigates whether sufficiently precise motion can be achieved by combining a\nSCARA robot and learning control methods. For this purpose, the method\nAutonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to\nmulti-input/multi-output systems. The proposed learning method solves reference\ntracking tasks in systems with unknown, nonlinear, multi-input/multi-output\ndynamics by iteratively updating an input trajectory in a plug-and-play fashion\nand without requiring manual parameter tuning. The proposed learning method is\nvalidated in a preliminary simulation study of a simplified SCARA robot that\nhas to perform three desired motions. The results demonstrate that the proposed\nlearning method achieves highly precise reference tracking without requiring\nany a priori model information or manual parameter tuning in as little as 15\ntrials per motion. The results further indicate that the combination of a SCARA\nrobot and learning method achieves sufficiently precise motion to potentially\nenable automatic myocardial injection if similar results can be obtained in a\nreal-world setting.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Iterative Motion Learning (AI-MOLE) of a SCARA Robot for Automated Myocardial Injection\",\"authors\":\"Michael Meindl, Raphael Mönkemöller, Thomas Seel\",\"doi\":\"arxiv-2409.06361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stem cell therapy is a promising approach to treat heart insufficiency and\\nbenefits from automated myocardial injection which requires highly precise\\nmotion of a robotic manipulator that is equipped with a syringe. This work\\ninvestigates whether sufficiently precise motion can be achieved by combining a\\nSCARA robot and learning control methods. For this purpose, the method\\nAutonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to\\nmulti-input/multi-output systems. The proposed learning method solves reference\\ntracking tasks in systems with unknown, nonlinear, multi-input/multi-output\\ndynamics by iteratively updating an input trajectory in a plug-and-play fashion\\nand without requiring manual parameter tuning. The proposed learning method is\\nvalidated in a preliminary simulation study of a simplified SCARA robot that\\nhas to perform three desired motions. The results demonstrate that the proposed\\nlearning method achieves highly precise reference tracking without requiring\\nany a priori model information or manual parameter tuning in as little as 15\\ntrials per motion. The results further indicate that the combination of a SCARA\\nrobot and learning method achieves sufficiently precise motion to potentially\\nenable automatic myocardial injection if similar results can be obtained in a\\nreal-world setting.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

干细胞疗法是治疗心脏功能不全的一种很有前景的方法,可从自动心肌注射中获益,这要求配备注射器的机器人机械手高度精确地运动。这项研究探讨了是否可以通过结合 SCARA 机器人和学习控制方法来实现足够精确的运动。为此,对自主迭代运动学习(AI-MOLE)方法进行了扩展,使其适用于多输入/多输出系统。所提出的学习方法以即插即用的方式迭代更新输入轨迹,无需手动调整参数,从而解决了具有未知、非线性、多输入/多输出动力学的系统中的参照跟踪任务。通过对一个简化 SCARA 机器人的初步仿真研究,验证了所提出的学习方法,该机器人需要执行三个预期动作。结果表明,所提出的学习方法无需任何先验模型信息或手动参数调整,即可实现高度精确的参考跟踪,每个运动只需 15 次试验。结果进一步表明,SCARA 机器人与学习方法的结合实现了足够精确的运动,如果能在真实世界环境中获得类似的结果,则有可能实现自动心肌注射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Iterative Motion Learning (AI-MOLE) of a SCARA Robot for Automated Myocardial Injection
Stem cell therapy is a promising approach to treat heart insufficiency and benefits from automated myocardial injection which requires highly precise motion of a robotic manipulator that is equipped with a syringe. This work investigates whether sufficiently precise motion can be achieved by combining a SCARA robot and learning control methods. For this purpose, the method Autonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to multi-input/multi-output systems. The proposed learning method solves reference tracking tasks in systems with unknown, nonlinear, multi-input/multi-output dynamics by iteratively updating an input trajectory in a plug-and-play fashion and without requiring manual parameter tuning. The proposed learning method is validated in a preliminary simulation study of a simplified SCARA robot that has to perform three desired motions. The results demonstrate that the proposed learning method achieves highly precise reference tracking without requiring any a priori model information or manual parameter tuning in as little as 15 trials per motion. The results further indicate that the combination of a SCARA robot and learning method achieves sufficiently precise motion to potentially enable automatic myocardial injection if similar results can be obtained in a real-world setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信