Ru Huang, Kai Chang, Huan He, Ruipeng Li, Yuanzhe Xi
{"title":"用机器学习降低伽勒金粗网格算子的运算复杂度","authors":"Ru Huang, Kai Chang, Huan He, Ruipeng Li, Yuanzhe Xi","doi":"10.1137/23m1583533","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. We propose a data-driven and machine-learning-based approach to compute non-Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of increasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid operators, we have developed novel machine learning algorithms that utilize neural networks combined with smooth test vectors from multigrid eigenvalue problems. The proposed method demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall MG convergence for solving parametric partial differential equation problems. Numerical experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to showcase the performance and comparison with existing methods for computing non-Galerkin coarse-grid operators. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liruipeng/SparseCoarseOperator.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"10 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Operator Complexity of Galerkin Coarse-grid Operators with Machine Learning\",\"authors\":\"Ru Huang, Kai Chang, Huan He, Ruipeng Li, Yuanzhe Xi\",\"doi\":\"10.1137/23m1583533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. We propose a data-driven and machine-learning-based approach to compute non-Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of increasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid operators, we have developed novel machine learning algorithms that utilize neural networks combined with smooth test vectors from multigrid eigenvalue problems. The proposed method demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall MG convergence for solving parametric partial differential equation problems. Numerical experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to showcase the performance and comparison with existing methods for computing non-Galerkin coarse-grid operators. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liruipeng/SparseCoarseOperator.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1583533\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1583533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reducing Operator Complexity of Galerkin Coarse-grid Operators with Machine Learning
SIAM Journal on Scientific Computing, Ahead of Print. Abstract. We propose a data-driven and machine-learning-based approach to compute non-Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of increasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid operators, we have developed novel machine learning algorithms that utilize neural networks combined with smooth test vectors from multigrid eigenvalue problems. The proposed method demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall MG convergence for solving parametric partial differential equation problems. Numerical experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to showcase the performance and comparison with existing methods for computing non-Galerkin coarse-grid operators. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liruipeng/SparseCoarseOperator.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.