Ru Huang, Kai Chang, Huan He, Ruipeng Li, Yuanzhe Xi
{"title":"用机器学习降低伽勒金粗网格算子的运算复杂度","authors":"Ru Huang, Kai Chang, Huan He, Ruipeng Li, Yuanzhe Xi","doi":"10.1137/23m1583533","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. We propose a data-driven and machine-learning-based approach to compute non-Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of increasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid operators, we have developed novel machine learning algorithms that utilize neural networks combined with smooth test vectors from multigrid eigenvalue problems. The proposed method demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall MG convergence for solving parametric partial differential equation problems. Numerical experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to showcase the performance and comparison with existing methods for computing non-Galerkin coarse-grid operators. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liruipeng/SparseCoarseOperator.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Operator Complexity of Galerkin Coarse-grid Operators with Machine Learning\",\"authors\":\"Ru Huang, Kai Chang, Huan He, Ruipeng Li, Yuanzhe Xi\",\"doi\":\"10.1137/23m1583533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. We propose a data-driven and machine-learning-based approach to compute non-Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of increasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid operators, we have developed novel machine learning algorithms that utilize neural networks combined with smooth test vectors from multigrid eigenvalue problems. The proposed method demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall MG convergence for solving parametric partial differential equation problems. Numerical experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to showcase the performance and comparison with existing methods for computing non-Galerkin coarse-grid operators. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liruipeng/SparseCoarseOperator.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1583533\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1583533","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reducing Operator Complexity of Galerkin Coarse-grid Operators with Machine Learning
SIAM Journal on Scientific Computing, Ahead of Print. Abstract. We propose a data-driven and machine-learning-based approach to compute non-Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of increasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid operators, we have developed novel machine learning algorithms that utilize neural networks combined with smooth test vectors from multigrid eigenvalue problems. The proposed method demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall MG convergence for solving parametric partial differential equation problems. Numerical experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to showcase the performance and comparison with existing methods for computing non-Galerkin coarse-grid operators. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liruipeng/SparseCoarseOperator.