{"title":"基于 BGN 的几何流参数有限元方法的稳定后向微分公式时间离散化","authors":"Wei Jiang, Chunmei Su, Ganghui Zhang","doi":"10.1137/23m1625597","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2874-A2898, October 2024. <br/> Abstract. We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formula (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and Nürnberg (J. Comput. Phys., 222 (2007), pp. 441–467), we successfully develop high-order BGN/BDF[math] schemes. The proposed BGN/BDF[math] schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired [math]th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF[math] schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Backward Differentiation Formula Time Discretization of BGN-Based Parametric Finite Element Methods for Geometric Flows\",\"authors\":\"Wei Jiang, Chunmei Su, Ganghui Zhang\",\"doi\":\"10.1137/23m1625597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2874-A2898, October 2024. <br/> Abstract. We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formula (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and Nürnberg (J. Comput. Phys., 222 (2007), pp. 441–467), we successfully develop high-order BGN/BDF[math] schemes. The proposed BGN/BDF[math] schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired [math]th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF[math] schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1625597\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1625597","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stable Backward Differentiation Formula Time Discretization of BGN-Based Parametric Finite Element Methods for Geometric Flows
SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2874-A2898, October 2024. Abstract. We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formula (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and Nürnberg (J. Comput. Phys., 222 (2007), pp. 441–467), we successfully develop high-order BGN/BDF[math] schemes. The proposed BGN/BDF[math] schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired [math]th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF[math] schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.