基于 BGN 的几何流参数有限元方法的稳定后向微分公式时间离散化

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wei Jiang, Chunmei Su, Ganghui Zhang
{"title":"基于 BGN 的几何流参数有限元方法的稳定后向微分公式时间离散化","authors":"Wei Jiang, Chunmei Su, Ganghui Zhang","doi":"10.1137/23m1625597","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2874-A2898, October 2024. <br/> Abstract. We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formula (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and Nürnberg (J. Comput. Phys., 222 (2007), pp. 441–467), we successfully develop high-order BGN/BDF[math] schemes. The proposed BGN/BDF[math] schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired [math]th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF[math] schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Backward Differentiation Formula Time Discretization of BGN-Based Parametric Finite Element Methods for Geometric Flows\",\"authors\":\"Wei Jiang, Chunmei Su, Ganghui Zhang\",\"doi\":\"10.1137/23m1625597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2874-A2898, October 2024. <br/> Abstract. We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formula (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and Nürnberg (J. Comput. Phys., 222 (2007), pp. 441–467), we successfully develop high-order BGN/BDF[math] schemes. The proposed BGN/BDF[math] schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired [math]th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF[math] schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1625597\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1625597","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 5 期,第 A2874-A2898 页,2024 年 10 月。 摘要我们提出了一类新的时间高阶参数有限元方法,用于求解各种曲线和曲面的几何流。通过将用于时间离散化的后向微分公式(BDF)纳入 BGN 公式,该公式最初由 Barrett、Garcke 和 Nürnberg 提出(J. Comput.物理》,222 (2007),第 441-467 页),我们成功开发了高阶 BGN/BDF[math] 方案。所提出的 BGN/BDF[math]方案不仅保留了经典一阶 BGN 方案的几乎所有优点,如计算效率和良好的网格质量,而且在形状度量方面表现出了理想的[math]三阶时间精度,从二阶精度到四阶精度不等。此外,我们还通过大量数值示例验证了我们提出的 BGN/BDF[math] 方案的性能,证明了它们对各种类型的几何流具有高阶时间精度,同时在整个演化过程中保持了良好的网格质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable Backward Differentiation Formula Time Discretization of BGN-Based Parametric Finite Element Methods for Geometric Flows
SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2874-A2898, October 2024.
Abstract. We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formula (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and Nürnberg (J. Comput. Phys., 222 (2007), pp. 441–467), we successfully develop high-order BGN/BDF[math] schemes. The proposed BGN/BDF[math] schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired [math]th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF[math] schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信