Lars Simon, Holger Eble, Hagen-Henrik Kowalski, Manuel Radons
{"title":"利用黑盒查询插值参数化量子电路","authors":"Lars Simon, Holger Eble, Hagen-Henrik Kowalski, Manuel Radons","doi":"10.1137/23m1609543","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page B600-B620, October 2024. <br/> Abstract. This article focuses on developing classical surrogates for parametrized quantum circuits using interpolation via (trigonometric) polynomials. We develop two algorithms for the construction of such surrogates and prove performance guarantees. The constructions are based on circuit evaluations which are blackbox in the sense that no structural specifics of the circuits are exploited. While acknowledging the limitations of the blackbox approach compared to whitebox evaluations, which exploit specific circuit properties, we demonstrate scenarios in which the blackbox approach might prove beneficial. Sample applications include but are not restricted to the approximation of variational quantum eigensolvers and the alleviaton of the barren plateau problem.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolating Parametrized Quantum Circuits Using Blackbox Queries\",\"authors\":\"Lars Simon, Holger Eble, Hagen-Henrik Kowalski, Manuel Radons\",\"doi\":\"10.1137/23m1609543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page B600-B620, October 2024. <br/> Abstract. This article focuses on developing classical surrogates for parametrized quantum circuits using interpolation via (trigonometric) polynomials. We develop two algorithms for the construction of such surrogates and prove performance guarantees. The constructions are based on circuit evaluations which are blackbox in the sense that no structural specifics of the circuits are exploited. While acknowledging the limitations of the blackbox approach compared to whitebox evaluations, which exploit specific circuit properties, we demonstrate scenarios in which the blackbox approach might prove beneficial. Sample applications include but are not restricted to the approximation of variational quantum eigensolvers and the alleviaton of the barren plateau problem.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1609543\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1609543","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Interpolating Parametrized Quantum Circuits Using Blackbox Queries
SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page B600-B620, October 2024. Abstract. This article focuses on developing classical surrogates for parametrized quantum circuits using interpolation via (trigonometric) polynomials. We develop two algorithms for the construction of such surrogates and prove performance guarantees. The constructions are based on circuit evaluations which are blackbox in the sense that no structural specifics of the circuits are exploited. While acknowledging the limitations of the blackbox approach compared to whitebox evaluations, which exploit specific circuit properties, we demonstrate scenarios in which the blackbox approach might prove beneficial. Sample applications include but are not restricted to the approximation of variational quantum eigensolvers and the alleviaton of the barren plateau problem.