DIAMANTE:一种以数据为中心的语义分割方法,用于通过卫星图像绘制树皮甲虫侵袭引起的树木枯死图

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Giuseppina Andresini, Annalisa Appice, Dino Ienco, Vito Recchia
{"title":"DIAMANTE:一种以数据为中心的语义分割方法,用于通过卫星图像绘制树皮甲虫侵袭引起的树木枯死图","authors":"Giuseppina Andresini, Annalisa Appice, Dino Ienco, Vito Recchia","doi":"10.1007/s10844-024-00877-6","DOIUrl":null,"url":null,"abstract":"<p>Forest tree dieback inventory has a crucial role in improving forest management strategies. This inventory is traditionally performed by forests through laborious and time-consuming human assessment of individual trees. On the other hand, the large amount of Earth satellite data that are publicly available with the Copernicus program and can be processed through advanced deep learning techniques has recently been established as an alternative to field surveys for forest tree dieback tasks. However, to realize its full potential, deep learning requires a deep understanding of satellite data since the data collection and preparation steps are essential as the model development step. In this study, we explore the performance of a data-centric semantic segmentation approach to detect forest tree dieback events due to bark beetle infestation in satellite images. The proposed approach prepares a multisensor data set collected using both the SAR Sentinel-1 sensor and the optical Sentinel-2 sensor and uses this dataset to train a multisensor semantic segmentation model. The evaluation shows the effectiveness of the proposed approach in a real inventory case study that regards non-overlapping forest scenes from the Northeast of France acquired in October 2018. The selected scenes host bark beetle infestation hotspots of different sizes, which originate from the mass reproduction of the bark beetle in the 2018 infestation.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"6 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIAMANTE: A data-centric semantic segmentation approach to map tree dieback induced by bark beetle infestations via satellite images\",\"authors\":\"Giuseppina Andresini, Annalisa Appice, Dino Ienco, Vito Recchia\",\"doi\":\"10.1007/s10844-024-00877-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forest tree dieback inventory has a crucial role in improving forest management strategies. This inventory is traditionally performed by forests through laborious and time-consuming human assessment of individual trees. On the other hand, the large amount of Earth satellite data that are publicly available with the Copernicus program and can be processed through advanced deep learning techniques has recently been established as an alternative to field surveys for forest tree dieback tasks. However, to realize its full potential, deep learning requires a deep understanding of satellite data since the data collection and preparation steps are essential as the model development step. In this study, we explore the performance of a data-centric semantic segmentation approach to detect forest tree dieback events due to bark beetle infestation in satellite images. The proposed approach prepares a multisensor data set collected using both the SAR Sentinel-1 sensor and the optical Sentinel-2 sensor and uses this dataset to train a multisensor semantic segmentation model. The evaluation shows the effectiveness of the proposed approach in a real inventory case study that regards non-overlapping forest scenes from the Northeast of France acquired in October 2018. The selected scenes host bark beetle infestation hotspots of different sizes, which originate from the mass reproduction of the bark beetle in the 2018 infestation.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-024-00877-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00877-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

林木枯死情况清查对于改进森林管理策略至关重要。传统上,森林部门需要对单棵树木进行费时费力的人工评估。另一方面,哥白尼计划公开提供了大量地球卫星数据,这些数据可通过先进的深度学习技术进行处理,最近已被确定为林木枯死任务实地调查的替代方法。然而,要充分发挥深度学习的潜力,需要对卫星数据有深入的了解,因为数据收集和准备步骤与模型开发步骤一样至关重要。在本研究中,我们探索了一种以数据为中心的语义分割方法的性能,以检测卫星图像中因树皮甲虫侵袭而导致的林木枯死事件。所提出的方法准备了一个利用合成孔径雷达哨兵-1 传感器和光学哨兵-2 传感器收集的多传感器数据集,并使用该数据集来训练一个多传感器语义分割模型。评估显示了所提方法在实际清单案例研究中的有效性,该案例研究涉及 2018 年 10 月从法国东北部获取的非重叠森林场景。所选场景包含不同大小的树皮甲虫侵扰热点,这些热点源于 2018 年侵扰中树皮甲虫的大规模繁殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DIAMANTE: A data-centric semantic segmentation approach to map tree dieback induced by bark beetle infestations via satellite images

DIAMANTE: A data-centric semantic segmentation approach to map tree dieback induced by bark beetle infestations via satellite images

Forest tree dieback inventory has a crucial role in improving forest management strategies. This inventory is traditionally performed by forests through laborious and time-consuming human assessment of individual trees. On the other hand, the large amount of Earth satellite data that are publicly available with the Copernicus program and can be processed through advanced deep learning techniques has recently been established as an alternative to field surveys for forest tree dieback tasks. However, to realize its full potential, deep learning requires a deep understanding of satellite data since the data collection and preparation steps are essential as the model development step. In this study, we explore the performance of a data-centric semantic segmentation approach to detect forest tree dieback events due to bark beetle infestation in satellite images. The proposed approach prepares a multisensor data set collected using both the SAR Sentinel-1 sensor and the optical Sentinel-2 sensor and uses this dataset to train a multisensor semantic segmentation model. The evaluation shows the effectiveness of the proposed approach in a real inventory case study that regards non-overlapping forest scenes from the Northeast of France acquired in October 2018. The selected scenes host bark beetle infestation hotspots of different sizes, which originate from the mass reproduction of the bark beetle in the 2018 infestation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信