{"title":"Beurling-Carleson 集、内函数和半线性方程","authors":"Oleg Ivrii, Artur Nicolau","doi":"10.2140/apde.2024.17.2585","DOIUrl":null,"url":null,"abstract":"<p>Beurling–Carleson sets have appeared in a number of areas of complex analysis such as boundary zero sets of analytic functions, inner functions with derivative in the Nevanlinna class, cyclicity in weighted Bergman spaces, Fuchsian groups of Widom-type and the corona problem in quotient Banach algebras. After surveying these developments, we give a general definition of Beurling–Carleson sets and discuss some of their basic properties. We show that the Roberts decomposition characterizes measures that do not charge Beurling–Carleson sets. </p><p> For a positive singular measure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> on the unit circle, let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> denote the singular inner function with singular measure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>. In the second part of the paper, we use a corona-type decomposition to relate a number of properties of singular measures on the unit circle, such as membership of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>′</mi></mrow></msubsup></math> in the Nevanlinna class <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒩</mi></math>, area conditions on level sets of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> and wepability. It was known that each of these properties holds for measures concentrated on Beurling–Carleson sets. We show that each of these properties implies that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> lives on a countable union of Beurling–Carleson sets. We also describe partial relations involving the membership of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>′</mi></mrow></msubsup></math> in the Hardy space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math>, membership of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> in the Besov space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msup></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1</mn><mo>−</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math>-Beurling–Carleson sets and give a number of examples which show that our results are optimal. </p><p> Finally, we show that measures that live on countable unions of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math>-Beurling–Carleson sets are almost in bijection with nearly maximal solutions of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><mi>u</mi>\n<mo>=</mo> <msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup>\n<mo>⋅</mo> <msub><mrow><mi>χ</mi></mrow><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></msub></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>></mo> <mn>3</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi>\n<mo>=</mo>\n<mo stretchy=\"false\">(</mo><mi>p</mi>\n<mo>−</mo> <mn>3</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mo stretchy=\"false\">(</mo><mi>p</mi>\n<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"53 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beurling–Carleson sets, inner functions and a semilinear equation\",\"authors\":\"Oleg Ivrii, Artur Nicolau\",\"doi\":\"10.2140/apde.2024.17.2585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Beurling–Carleson sets have appeared in a number of areas of complex analysis such as boundary zero sets of analytic functions, inner functions with derivative in the Nevanlinna class, cyclicity in weighted Bergman spaces, Fuchsian groups of Widom-type and the corona problem in quotient Banach algebras. After surveying these developments, we give a general definition of Beurling–Carleson sets and discuss some of their basic properties. We show that the Roberts decomposition characterizes measures that do not charge Beurling–Carleson sets. </p><p> For a positive singular measure <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math> on the unit circle, let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> denote the singular inner function with singular measure <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math>. In the second part of the paper, we use a corona-type decomposition to relate a number of properties of singular measures on the unit circle, such as membership of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>′</mi></mrow></msubsup></math> in the Nevanlinna class <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"bold-script\\\">𝒩</mi></math>, area conditions on level sets of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> and wepability. It was known that each of these properties holds for measures concentrated on Beurling–Carleson sets. We show that each of these properties implies that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math> lives on a countable union of Beurling–Carleson sets. We also describe partial relations involving the membership of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>′</mi></mrow></msubsup></math> in the Hardy space <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math>, membership of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> in the Besov space <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msup></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>−</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo></math>-Beurling–Carleson sets and give a number of examples which show that our results are optimal. </p><p> Finally, we show that measures that live on countable unions of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math>-Beurling–Carleson sets are almost in bijection with nearly maximal solutions of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><mi>u</mi>\\n<mo>=</mo> <msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup>\\n<mo>⋅</mo> <msub><mrow><mi>χ</mi></mrow><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></msub></math> when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>></mo> <mn>3</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi>\\n<mo>=</mo>\\n<mo stretchy=\\\"false\\\">(</mo><mi>p</mi>\\n<mo>−</mo> <mn>3</mn><mo stretchy=\\\"false\\\">)</mo><mo>∕</mo><mo stretchy=\\\"false\\\">(</mo><mi>p</mi>\\n<mo>−</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math>. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.2585\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2585","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Beurling–Carleson sets, inner functions and a semilinear equation
Beurling–Carleson sets have appeared in a number of areas of complex analysis such as boundary zero sets of analytic functions, inner functions with derivative in the Nevanlinna class, cyclicity in weighted Bergman spaces, Fuchsian groups of Widom-type and the corona problem in quotient Banach algebras. After surveying these developments, we give a general definition of Beurling–Carleson sets and discuss some of their basic properties. We show that the Roberts decomposition characterizes measures that do not charge Beurling–Carleson sets.
For a positive singular measure on the unit circle, let denote the singular inner function with singular measure . In the second part of the paper, we use a corona-type decomposition to relate a number of properties of singular measures on the unit circle, such as membership of in the Nevanlinna class , area conditions on level sets of and wepability. It was known that each of these properties holds for measures concentrated on Beurling–Carleson sets. We show that each of these properties implies that lives on a countable union of Beurling–Carleson sets. We also describe partial relations involving the membership of in the Hardy space , membership of in the Besov space and -Beurling–Carleson sets and give a number of examples which show that our results are optimal.
Finally, we show that measures that live on countable unions of -Beurling–Carleson sets are almost in bijection with nearly maximal solutions of when and .
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.