⊕p∈Pℤ∕pℤ作用和有限维零势系统的Host-Kra因子

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Or Shalom
{"title":"⊕p∈Pℤ∕pℤ作用和有限维零势系统的Host-Kra因子","authors":"Or Shalom","doi":"10.2140/apde.2024.17.2379","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒫</mi></math> be a countable multiset of primes and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi>\n<mo>=</mo><msub><mrow><mi> ⊕</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo>\n<!--nolimits--></mrow><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math>. We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. We show that the universal characteristic factor of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>&lt;</mo>\n<mi>k</mi>\n<mo>+</mo> <mn>1</mn></math> is a factor of an inverse limit of <span>finite-dimensional</span>\n<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math><span>-step</span>\n<span>nilpotent homogeneous spaces</span>. The latter is a counterpart of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math>-convergence of multiple ergodic averages associated with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-term arithmetic progressions in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi></math>-actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math>-actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host–Kra factors for ⊕ p∈Pℤ∕pℤ actions and finite-dimensional nilpotent systems\",\"authors\":\"Or Shalom\",\"doi\":\"10.2140/apde.2024.17.2379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"bold-script\\\">𝒫</mi></math> be a countable multiset of primes and let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi>\\n<mo>=</mo><msub><mrow><mi> ⊕</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo>\\n<!--nolimits--></mrow><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math>. We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>. We show that the universal characteristic factor of order <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<mo>&lt;</mo>\\n<mi>k</mi>\\n<mo>+</mo> <mn>1</mn></math> is a factor of an inverse limit of <span>finite-dimensional</span>\\n<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math><span>-step</span>\\n<span>nilpotent homogeneous spaces</span>. The latter is a counterpart of a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>-step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math>-convergence of multiple ergodic averages associated with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>-term arithmetic progressions in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℤ</mi></math>-actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math>-actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.2379\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2379","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设𝒫 是一个可数的素数多集,设 G= ⊕ p∈Pℤ∕pℤ 。我们研究了与群 G 的 Gowers-Host-Kra 半模态相关的普遍特征因子。我们证明,阶数为 <k+ 1 的普遍特征因子是有限维alk-stepnilpotent 同调空间的逆极限因子。后者是 k 阶零系统的对应物,其中的均相群不一定是李群。作为结构定理的一个应用,我们推导出了与 G 中 k 项算术级数相关的多重遍历平均数的 L2- 收敛的另一种证明,并推导出了在底层空间是零熵均质系统的特殊情况下的极限公式。我们的结果提供了 Host 和 Kra (2005) 以及 Ziegler (2007) 关于ℤ作用的结构定理的对应定理,并推广了 Bergelson、Tao 和 Ziegler (2011, 2015) 关于𝔽pω作用的结果。这也是研究非无限生成的无界扭转群的 Host-Kra 因子的第一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Host–Kra factors for ⊕ p∈Pℤ∕pℤ actions and finite-dimensional nilpotent systems

Let 𝒫 be a countable multiset of primes and let G = pPp. We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group G. We show that the universal characteristic factor of order < k + 1 is a factor of an inverse limit of finite-dimensional k-step nilpotent homogeneous spaces. The latter is a counterpart of a k-step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the L2-convergence of multiple ergodic averages associated with k-term arithmetic progressions in G and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning -actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning 𝔽pω-actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信