{"title":"⊕p∈Pℤ∕pℤ作用和有限维零势系统的Host-Kra因子","authors":"Or Shalom","doi":"10.2140/apde.2024.17.2379","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒫</mi></math> be a countable multiset of primes and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi>\n<mo>=</mo><msub><mrow><mi> ⊕</mi><mo> <!--FUNCTION APPLICATION--></mo>\n<!--nolimits--></mrow><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math>. We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. We show that the universal characteristic factor of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo><</mo>\n<mi>k</mi>\n<mo>+</mo> <mn>1</mn></math> is a factor of an inverse limit of <span>finite-dimensional</span>\n<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math><span>-step</span>\n<span>nilpotent homogeneous spaces</span>. The latter is a counterpart of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math>-convergence of multiple ergodic averages associated with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-term arithmetic progressions in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi></math>-actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math>-actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"181 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host–Kra factors for ⊕ p∈Pℤ∕pℤ actions and finite-dimensional nilpotent systems\",\"authors\":\"Or Shalom\",\"doi\":\"10.2140/apde.2024.17.2379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"bold-script\\\">𝒫</mi></math> be a countable multiset of primes and let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi>\\n<mo>=</mo><msub><mrow><mi> ⊕</mi><mo> <!--FUNCTION APPLICATION--></mo>\\n<!--nolimits--></mrow><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math>. We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>. We show that the universal characteristic factor of order <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<mo><</mo>\\n<mi>k</mi>\\n<mo>+</mo> <mn>1</mn></math> is a factor of an inverse limit of <span>finite-dimensional</span>\\n<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math><span>-step</span>\\n<span>nilpotent homogeneous spaces</span>. The latter is a counterpart of a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>-step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math>-convergence of multiple ergodic averages associated with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>-term arithmetic progressions in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℤ</mi></math>-actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi mathvariant=\\\"double-struck\\\">𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math>-actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"181 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.2379\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2379","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设𝒫 是一个可数的素数多集,设 G= ⊕ p∈Pℤ∕pℤ 。我们研究了与群 G 的 Gowers-Host-Kra 半模态相关的普遍特征因子。我们证明,阶数为 <k+ 1 的普遍特征因子是有限维alk-stepnilpotent 同调空间的逆极限因子。后者是 k 阶零系统的对应物,其中的均相群不一定是李群。作为结构定理的一个应用,我们推导出了与 G 中 k 项算术级数相关的多重遍历平均数的 L2- 收敛的另一种证明,并推导出了在底层空间是零熵均质系统的特殊情况下的极限公式。我们的结果提供了 Host 和 Kra (2005) 以及 Ziegler (2007) 关于ℤ作用的结构定理的对应定理,并推广了 Bergelson、Tao 和 Ziegler (2011, 2015) 关于𝔽pω作用的结果。这也是研究非无限生成的无界扭转群的 Host-Kra 因子的第一个实例。
Host–Kra factors for ⊕ p∈Pℤ∕pℤ actions and finite-dimensional nilpotent systems
Let be a countable multiset of primes and let . We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group . We show that the universal characteristic factor of order is a factor of an inverse limit of finite-dimensional-stepnilpotent homogeneous spaces. The latter is a counterpart of a -step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the -convergence of multiple ergodic averages associated with -term arithmetic progressions in and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning -actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning -actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.