{"title":"卡兹丹性质 (T) 在通用非网格中的替代物","authors":"Narutaka Ozawa","doi":"10.2140/apde.2024.17.2541","DOIUrl":null,"url":null,"abstract":"<p>The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> EL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℛ</mi><mo stretchy=\"false\">)</mo></math>, generated by elementary matrices over a finitely generated commutative ring <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℛ</mi></math>, has Kazhdan’s property (T) as soon as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>≥</mo> <mn>3</mn></math>. This is no longer true if the ring <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℛ</mi></math> is replaced by a commutative rng (a ring but without the identity) due to nilpotent quotients <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> EL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℛ</mi><mo>∕</mo><msup><mrow><mi mathvariant=\"bold-script\">ℛ</mi></mrow><mrow><mi>k</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>. We prove that even in such a case the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> EL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℛ</mi><mo stretchy=\"false\">)</mo></math> satisfies a certain property that can substitute property (T), provided that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> is large enough. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A substitute for Kazhdan’s property (T) for universal nonlattices\",\"authors\":\"Narutaka Ozawa\",\"doi\":\"10.2140/apde.2024.17.2541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> EL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"bold-script\\\">ℛ</mi><mo stretchy=\\\"false\\\">)</mo></math>, generated by elementary matrices over a finitely generated commutative ring <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"bold-script\\\">ℛ</mi></math>, has Kazhdan’s property (T) as soon as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi>\\n<mo>≥</mo> <mn>3</mn></math>. This is no longer true if the ring <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"bold-script\\\">ℛ</mi></math> is replaced by a commutative rng (a ring but without the identity) due to nilpotent quotients <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> EL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"bold-script\\\">ℛ</mi><mo>∕</mo><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℛ</mi></mrow><mrow><mi>k</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math>. We prove that even in such a case the group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> EL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"bold-script\\\">ℛ</mi><mo stretchy=\\\"false\\\">)</mo></math> satisfies a certain property that can substitute property (T), provided that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> is large enough. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.2541\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2541","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
沙洛姆-瓦瑟斯坦和埃尔绍夫-杰金-扎皮林的著名定理指出,由有限生成交换环ℛ上的基本矩阵生成的群 EL n(ℛ) 只要 n≥ 3 就具有卡兹丹性质 (T)。如果由于无穷商 EL n(ℛ∕ℛk) 的原因,把环ℛ 换成了交换环 rng(一个环,但没有同一性),那么上述性质就不再成立了。我们将证明,即使在这种情况下,只要 n 足够大,EL n(ℛ)群也能满足某个可以替代性质 (T) 的性质。
A substitute for Kazhdan’s property (T) for universal nonlattices
The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group , generated by elementary matrices over a finitely generated commutative ring , has Kazhdan’s property (T) as soon as . This is no longer true if the ring is replaced by a commutative rng (a ring but without the identity) due to nilpotent quotients . We prove that even in such a case the group satisfies a certain property that can substitute property (T), provided that is large enough.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.