有限三角和的求值和关系

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bruce C. Berndt, Sun Kim, Alexandru Zaharescu
{"title":"有限三角和的求值和关系","authors":"Bruce C. Berndt, Sun Kim, Alexandru Zaharescu","doi":"10.1007/s40687-024-00469-4","DOIUrl":null,"url":null,"abstract":"<p>Several methods are used to evaluate finite trigonometric sums. In most cases, either the sum had not previously been evaluated, or it had been evaluated, but only by analytic means, e.g., by complex analysis or modular transformation formulas. We establish both reciprocity and three sum relations for trigonometric sums. Motivated by certain sums that we have evaluated, we add coprime conditions to the summands and thereby define analogues of Ramanujan sums, which we in turn evaluate. One of these analogues leads to a criterion for the Riemann Hypothesis, analogous to the Franel–Landau criterion.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluations and relations for finite trigonometric sums\",\"authors\":\"Bruce C. Berndt, Sun Kim, Alexandru Zaharescu\",\"doi\":\"10.1007/s40687-024-00469-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several methods are used to evaluate finite trigonometric sums. In most cases, either the sum had not previously been evaluated, or it had been evaluated, but only by analytic means, e.g., by complex analysis or modular transformation formulas. We establish both reciprocity and three sum relations for trigonometric sums. Motivated by certain sums that we have evaluated, we add coprime conditions to the summands and thereby define analogues of Ramanujan sums, which we in turn evaluate. One of these analogues leads to a criterion for the Riemann Hypothesis, analogous to the Franel–Landau criterion.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00469-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00469-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有几种方法可用于求有限三角和。在大多数情况下,要么以前没有求过和,要么求过和,但只是通过分析方法,如复分析或模块变换公式。我们为三角和建立了互易关系和三和关系。受我们已求和的某些和的启发,我们为和添加了共生条件,从而定义了拉马努扬和的类似物,并反过来对它们进行求和。其中一个类比导致了黎曼假说的判据,类似于弗朗-朗道判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluations and relations for finite trigonometric sums

Several methods are used to evaluate finite trigonometric sums. In most cases, either the sum had not previously been evaluated, or it had been evaluated, but only by analytic means, e.g., by complex analysis or modular transformation formulas. We establish both reciprocity and three sum relations for trigonometric sums. Motivated by certain sums that we have evaluated, we add coprime conditions to the summands and thereby define analogues of Ramanujan sums, which we in turn evaluate. One of these analogues leads to a criterion for the Riemann Hypothesis, analogous to the Franel–Landau criterion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信