{"title":"有限三角和的求值和关系","authors":"Bruce C. Berndt, Sun Kim, Alexandru Zaharescu","doi":"10.1007/s40687-024-00469-4","DOIUrl":null,"url":null,"abstract":"<p>Several methods are used to evaluate finite trigonometric sums. In most cases, either the sum had not previously been evaluated, or it had been evaluated, but only by analytic means, e.g., by complex analysis or modular transformation formulas. We establish both reciprocity and three sum relations for trigonometric sums. Motivated by certain sums that we have evaluated, we add coprime conditions to the summands and thereby define analogues of Ramanujan sums, which we in turn evaluate. One of these analogues leads to a criterion for the Riemann Hypothesis, analogous to the Franel–Landau criterion.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluations and relations for finite trigonometric sums\",\"authors\":\"Bruce C. Berndt, Sun Kim, Alexandru Zaharescu\",\"doi\":\"10.1007/s40687-024-00469-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several methods are used to evaluate finite trigonometric sums. In most cases, either the sum had not previously been evaluated, or it had been evaluated, but only by analytic means, e.g., by complex analysis or modular transformation formulas. We establish both reciprocity and three sum relations for trigonometric sums. Motivated by certain sums that we have evaluated, we add coprime conditions to the summands and thereby define analogues of Ramanujan sums, which we in turn evaluate. One of these analogues leads to a criterion for the Riemann Hypothesis, analogous to the Franel–Landau criterion.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00469-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00469-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluations and relations for finite trigonometric sums
Several methods are used to evaluate finite trigonometric sums. In most cases, either the sum had not previously been evaluated, or it had been evaluated, but only by analytic means, e.g., by complex analysis or modular transformation formulas. We establish both reciprocity and three sum relations for trigonometric sums. Motivated by certain sums that we have evaluated, we add coprime conditions to the summands and thereby define analogues of Ramanujan sums, which we in turn evaluate. One of these analogues leads to a criterion for the Riemann Hypothesis, analogous to the Franel–Landau criterion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.