无力磁通绳的自洽平衡

O. K. Cheremnykh, V. M. Lashkin
{"title":"无力磁通绳的自洽平衡","authors":"O. K. Cheremnykh, V. M. Lashkin","doi":"arxiv-2408.08512","DOIUrl":null,"url":null,"abstract":"We present an exact solution to the problem of a self-consistent equilibrium\nforce-free magnetic flux rope. Unlike other approaches, we use magnetostatic\nequations and assume only a relatively rapid decrease in the axial magnetic\nfield at infinity. For the first time we obtain a new nonlinear equation for\nthe axial current density, the derivation of which does not require any\nphenomenological assumptions. From the resulting nonlinear equation, we\nanalytically find the radial profiles of the components of the magnetic field\nstrength and current density.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-consistent equilibrium of a force-free magnetic flux rope\",\"authors\":\"O. K. Cheremnykh, V. M. Lashkin\",\"doi\":\"arxiv-2408.08512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an exact solution to the problem of a self-consistent equilibrium\\nforce-free magnetic flux rope. Unlike other approaches, we use magnetostatic\\nequations and assume only a relatively rapid decrease in the axial magnetic\\nfield at infinity. For the first time we obtain a new nonlinear equation for\\nthe axial current density, the derivation of which does not require any\\nphenomenological assumptions. From the resulting nonlinear equation, we\\nanalytically find the radial profiles of the components of the magnetic field\\nstrength and current density.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了自洽平衡无力磁通绳问题的精确解决方案。与其他方法不同的是,我们使用了磁静力方程,并假定轴向磁场在无限远处会相对快速地减小。我们首次获得了轴向电流密度的新非线性方程,其推导不需要任何现象学假设。根据所得到的非线性方程,我们可以分析出磁场强度和电流密度分量的径向剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-consistent equilibrium of a force-free magnetic flux rope
We present an exact solution to the problem of a self-consistent equilibrium force-free magnetic flux rope. Unlike other approaches, we use magnetostatic equations and assume only a relatively rapid decrease in the axial magnetic field at infinity. For the first time we obtain a new nonlinear equation for the axial current density, the derivation of which does not require any phenomenological assumptions. From the resulting nonlinear equation, we analytically find the radial profiles of the components of the magnetic field strength and current density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信