光滑孤波在强度相关弥散条件下的稳定性

P. G. Kevrekidis, D. E. Pelinovsky, R. M. Ross
{"title":"光滑孤波在强度相关弥散条件下的稳定性","authors":"P. G. Kevrekidis, D. E. Pelinovsky, R. M. Ross","doi":"arxiv-2408.11192","DOIUrl":null,"url":null,"abstract":"The cubic nonlinear Schrodinger equation (NLS) in one dimension is considered\nin the presence of an intensity-dependent dispersion term. We study bright\nsolitary waves with smooth profiles which extend from the limit where the\ndependence of the dispersion coefficient on the wave intensity is negligible to\nthe limit where the solitary wave becomes singular due to vanishing dispersion\ncoefficient. We analyze and numerically explore the stability for such smooth\nsolitary waves, showing with the help of numerical approximations that the\nfamily of solitary waves becomes unstable in the intermediate region between\nthe two limits, while being stable in both limits. This bistability, that has\nalso been observed in other NLS equations with the generalized nonlinearity,\nbrings about interesting dynamical transitions from one stable branch to\nanother stable branch, that are explored in direct numerical simulations of the\nNLS equation with the intensity-dependent dispersion term.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of smooth solitary waves under intensity--dependent dispersion\",\"authors\":\"P. G. Kevrekidis, D. E. Pelinovsky, R. M. Ross\",\"doi\":\"arxiv-2408.11192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cubic nonlinear Schrodinger equation (NLS) in one dimension is considered\\nin the presence of an intensity-dependent dispersion term. We study bright\\nsolitary waves with smooth profiles which extend from the limit where the\\ndependence of the dispersion coefficient on the wave intensity is negligible to\\nthe limit where the solitary wave becomes singular due to vanishing dispersion\\ncoefficient. We analyze and numerically explore the stability for such smooth\\nsolitary waves, showing with the help of numerical approximations that the\\nfamily of solitary waves becomes unstable in the intermediate region between\\nthe two limits, while being stable in both limits. This bistability, that has\\nalso been observed in other NLS equations with the generalized nonlinearity,\\nbrings about interesting dynamical transitions from one stable branch to\\nanother stable branch, that are explored in direct numerical simulations of the\\nNLS equation with the intensity-dependent dispersion term.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在存在与强度相关的弥散项的情况下,我们研究了一维的立方非线性薛定谔方程(NLS)。我们研究了具有光滑轮廓的亮孤波,它从频散系数对波强的依赖性可忽略的极限延伸到孤波由于频散系数消失而变得奇异的极限。我们对这种平滑孤波的稳定性进行了分析和数值探索,借助数值近似表明,孤波家族在两个极限之间的中间区域变得不稳定,而在两个极限中都是稳定的。这种双稳态性在其他具有广义非线性的 NLS 方程中也被观察到,它带来了从一个稳定分支到另一个稳定分支的有趣的动力学转变,我们在对具有强度相关色散项的 NLS 方程进行直接数值模拟时探索了这种转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of smooth solitary waves under intensity--dependent dispersion
The cubic nonlinear Schrodinger equation (NLS) in one dimension is considered in the presence of an intensity-dependent dispersion term. We study bright solitary waves with smooth profiles which extend from the limit where the dependence of the dispersion coefficient on the wave intensity is negligible to the limit where the solitary wave becomes singular due to vanishing dispersion coefficient. We analyze and numerically explore the stability for such smooth solitary waves, showing with the help of numerical approximations that the family of solitary waves becomes unstable in the intermediate region between the two limits, while being stable in both limits. This bistability, that has also been observed in other NLS equations with the generalized nonlinearity, brings about interesting dynamical transitions from one stable branch to another stable branch, that are explored in direct numerical simulations of the NLS equation with the intensity-dependent dispersion term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信