非线性网格动力学

Christopher Chong, P. G. Kevrekidis
{"title":"非线性网格动力学","authors":"Christopher Chong, P. G. Kevrekidis","doi":"arxiv-2408.15837","DOIUrl":null,"url":null,"abstract":"In this topical review we explore the dynamics of nonlinear lattices with a\nparticular focus to Fermi-Pasta-Ulam-Tsingou type models that arise in the\nstudy of elastic media and, more specifically, granular crystals. We first\nrevisit the workhorse of such lattices, namely traveling waves, both from a\ncontinuum, but also from a genuinely discrete perspective, both without and\nwith a linear force component (induced by the so-called precompression). We\nthen extend considerations to time-periodic states, examining dark breather\nstructures in homogeneous crystals, as well as bright breathers in diatomic\nlattices. The last pattern that we consider extensively is the dispersive shock\nwave arising in the context of suitable Riemann (step) initial data. We show\nhow the use of continuum (KdV) and discrete (Toda) integrable approximations\ncan be used to get a first quantitative handle of the relevant waveforms. In\nall cases, theoretical analysis is accompanied by numerical computations and,\nwhere possible, by a recap and illustration of prototypical experimental\nresults. We close the chapter by offering a number of ongoing and potential\nfuture directions and associated open problems in the field.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Nonlinear Lattices\",\"authors\":\"Christopher Chong, P. G. Kevrekidis\",\"doi\":\"arxiv-2408.15837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this topical review we explore the dynamics of nonlinear lattices with a\\nparticular focus to Fermi-Pasta-Ulam-Tsingou type models that arise in the\\nstudy of elastic media and, more specifically, granular crystals. We first\\nrevisit the workhorse of such lattices, namely traveling waves, both from a\\ncontinuum, but also from a genuinely discrete perspective, both without and\\nwith a linear force component (induced by the so-called precompression). We\\nthen extend considerations to time-periodic states, examining dark breather\\nstructures in homogeneous crystals, as well as bright breathers in diatomic\\nlattices. The last pattern that we consider extensively is the dispersive shock\\nwave arising in the context of suitable Riemann (step) initial data. We show\\nhow the use of continuum (KdV) and discrete (Toda) integrable approximations\\ncan be used to get a first quantitative handle of the relevant waveforms. In\\nall cases, theoretical analysis is accompanied by numerical computations and,\\nwhere possible, by a recap and illustration of prototypical experimental\\nresults. We close the chapter by offering a number of ongoing and potential\\nfuture directions and associated open problems in the field.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇专题综述中,我们探讨了非线性晶格的动力学,尤其侧重于费米-帕斯塔-乌兰-钦古类型的模型,这些模型出现在弹性介质的研究中,更具体地说,出现在粒状晶体的研究中。我们首先从连续的角度,同时也从真正离散的角度,对此类晶格的主力--行波--进行了重温,既包括没有线性力分量的行波,也包括有线性力分量的行波(由所谓的预压缩引起)。我们将考虑扩展到时间周期状态,研究了均质晶体中的暗呼吸结构,以及二原子晶格中的亮呼吸结构。我们广泛考虑的最后一种模式是在合适的黎曼(阶跃)初始数据背景下产生的色散冲击波。我们展示了如何利用连续(KdV)和离散(Toda)可积分近似来对相关波形进行初步定量处理。在所有情况下,理论分析都伴随着数值计算,并在可能的情况下对原型实验结果进行回顾和说明。在本章的最后,我们提出了该领域正在进行的和潜在的未来发展方向,以及相关的未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Nonlinear Lattices
In this topical review we explore the dynamics of nonlinear lattices with a particular focus to Fermi-Pasta-Ulam-Tsingou type models that arise in the study of elastic media and, more specifically, granular crystals. We first revisit the workhorse of such lattices, namely traveling waves, both from a continuum, but also from a genuinely discrete perspective, both without and with a linear force component (induced by the so-called precompression). We then extend considerations to time-periodic states, examining dark breather structures in homogeneous crystals, as well as bright breathers in diatomic lattices. The last pattern that we consider extensively is the dispersive shock wave arising in the context of suitable Riemann (step) initial data. We show how the use of continuum (KdV) and discrete (Toda) integrable approximations can be used to get a first quantitative handle of the relevant waveforms. In all cases, theoretical analysis is accompanied by numerical computations and, where possible, by a recap and illustration of prototypical experimental results. We close the chapter by offering a number of ongoing and potential future directions and associated open problems in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信